
CHANGE OF SCALES FOR CRYSTAL DISLOCATION DYNAMICS

STEFANIA PATRIZI

Abstract. We present some recent results obtained in [12, 13, 19, 26, 28, 29, 35, 36,
37, 38] for equations of evolutionary type, run by fractional and possibly anisotropic
fractional operators. The models considered arise natural in crystallography, in which
the solution of the equation has the physical meaning of the atom dislocation inside
the crystal structure. Since different scales come into play in such description, different
models have been adopted in order to deal with phenomena at atomic, microscopic,
mesoscopic and macroscopic scale. We show that, looking at the asymptotic states of
the solutions of equations modeling the dynamics of dislocations at a given scale, one
can deduce the model for the motion of dislocations at a larger scale.

1. Introduction

Dislocations are line defects in crystals. Their typical length is of the order of 10−6m
and their thickness of order of 10−9m. When the material is submitted to shear stress,
these lines can move in the crystallographic planes and their dynamics is one of the main
explanation of the plastic behavior of metals. Dislocations can be described at several
scales by different models:

(a) atomic scale (Frenkel-Kontorova model),
(b) microscopic scale (Peierls-Nabarro model),
(c) mesoscopic scale (Discrete Dislocation Dynamics),
(d) macroscopic scale (elasto-visco-plasticity with density of dislocations).

We refer the reader to the book of Hirth and Lothe [23] for a detailed introduction to
dislocations. In physics and mechanics, it is a great challenge to try to predict macro-
scopic elasto-visco-plasticity properties of materials (like metals), based on microscopic
properties (like dislocations). The classical Frenkel-Kontorova model describes a chain of
classical particles evolving in a one dimensional space, coupled with their neighbors and
subjected to a periodic potential, see the book of Braun and Kivshar [6] for a detailed
presentation of the model. The Peierls-Nabarro model has been originally introduced as a
variational (stationary) model (see [32, 23]), in which the microscopic effects are described
by a partial differential equation involving a fractional and possibly anisotropic operator
of order 1 of elliptic type. The asymptotics of the stationary model have been charac-
terized in a number of mathematical papers within the framework of Γ-convergence, see,
e.g., the works by Garroni, Leoni, Müller and collaborators [17, 18, 9, 8, 2] and references
therein also for related models. In the face cubic structured (FCC) observed in many
metals and alloys, dislocations move at low temperature on the slip plane.The dynam-
ics of dislocations at microscopic scale is then described by the evolutive version of the
Peierls-Nabarro model, see for instance [11, 30].

Several changes of scale exist in the literature. In dimension 1, the passage from the
Frenkel-Kontorova model to Peierls-Nabarro model (from (a) to (b)) has been performed
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in [14]. The evolutive Peierls-Nabarro equation in dimension 1 where the fractional op-
erator is the half-Laplacian, has been considered by González and Monneau [19]. The
equation models the case of parallel straight edge dislocation lines in the same slip plane.
In this setting, after a suitable section of a three-dimensional crystal with a transverse
plane, dislocation lines can be identified with points lying in the same line. We will refer
to them as particles (though no ”material” particle is really involved). In [19], looking
at the sharp interface limit of the phase transitions of the Peierls-Nabarro model, the
authors identify a dynamics of particles that corresponds to the classical discrete disloca-
tion dynamics (from (b) to (c)). The results of [19] have been extended to the fractional
Laplacian of order 2s ∈ (0, 2) by Dipierro, Figalli, Palatucci and Valdinoci [13, 12]. The
evolutive, generalized (s ∈ (0, 1)) Peierls-Nabarro equation in dimension 1 has been con-
sidered again by the author and E. Valdinoci in [35]. Here, differently from the existing
literature, dislocation particles are allowed to have different orientations. This produces
a new phenomenon: collision of particles. Indeed particles with opposite orientations
have the tendency to attract each other. The main difficulty here is that when a collision
occurs the mesoscopic scale model becomes singular and we loose information about the
dynamics of the particles after the collision. We have been able to overcome this difficulty
in [37, 38], where we describe the dynamics of dislocations for times bigger than the col-
lision time. We want to mention the papers [5, 1], for related results about the dynamics
of dislocations for short times.

For N > 2, the large scale limit of a single phase transition described by Peierls-Nabarro
shows that the line tension effect is the much stronger term. The limit model for s > 1

2

appears to be the mean curvature motion as proven by Imbert and Souganidis [26]. For
s < 1

2
, only partial but significant results have been obtained in [26], suggesting that in

this case the front moves by fractional mean curvature. The results of [26] can be seen
as the non-local counterpart of those obtained for the Allen-Cahn equation (see [10]).
The double limit behavior of the Peierls-Nabarro model in dimensions greater than 1 has
been also stressed in [39]. Here the authors show that the Peierls-Nabarro energy in a
bounded domain of RN , N > 2, Γ-converges to the classical minimal surface functional
when s ∈

[
1
2
, 1
)
, while it Γ-converges to the non-local minimal surface functional when

s ∈
(
0, 1

2

)
.

The passage from the Discrete Dislocation Dynamics model to the Dislocation Density
model in dimension 1 has been performed in [15] (from (c) to (d)).

In [29] we have investigated the large scale limit of the evolutive Peierls-Nabarro model
in any dimension N , in the case of a large number of phase transitions (i.e. of dislocations),
recovering at the limit a model with evolution of dislocation densities. In other words, a
direct passage from the microscopic scale (Peierls-Nabarro model) to the macroscopic scale
(elasto-visco-plasticity with density of dislocations), has been performed (from (b) to (d)).
From a mathematical point of view, this is an homogenization problem for an evolutive
equation run by a fractional and possibly anisotropic operator of order 1 of elliptic type,
usually called Lévy operator. The homogenized limit equation can be interpreted as the
plastic flow rule in a model for macroscopic crystal plasticity. In [28] we have been able
to explicitly characterize the macroscopic equation in the case of parallel straight edge
dislocation lines in the same slip plane with the same Burgers’ vectors, moving with self-
interactions. This result recovers the so called Orowan’s law. In the Physics literature this
was proposed by Head in [22]. The results of [29, 28] have been extended to equations with
anisotropic fractional operators of any order 2s ∈ (0, 2) in [36]. The scaling of the system
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and the results obtained are different according to the fractional parameter s. Namely,
when s > 1

2
the effective Hamiltonian ”localizes” and it only depends on a first order

differential operator. Conversely, when s < 1
2
, the non-local features are predominant and

the effective Hamiltonian involves the fractional operator of order s.

The aim of the present paper is to describe and explain some recent results for problems
involving non-linear and non-local partial differential equations with application to the
theory of crystal dislocations. Due to their mathematical interest and in view of the
concrete applications in physical models, these problems have been extensively studied in
the recent literature. The results presented here, in particular, are contained in [12, 13,
19, 26, 28, 29, 35, 36, 37, 38]. Proofs are quite technical, so we have decided not to include
them in the paper. We prefer instead to give heuristic explanations of the theorems we
are going to state. We want to mention the paper [21] for a presentation of results prior
to [12, 13, 28, 29, 35, 36, 37, 38], related to passages of scales in dimension 1, from the
atomic one to the macroscopic one.

Organization of the paper. The paper is organized as follows. We first recall the
classical Peierls-Nabarro model, in Section 2. In Section 3 we describe the passage from
the Peierls-Nabarro model to the Discrete Dislocation Dynamics model. The results here
presented are contained in [12, 13, 19, 35, 37, 38]. In Section 4 we review the homoge-
nization of the Peierls-Nabarro model which represents the passage from the microscopic
to the macroscopic scale, and it is studied in [28, 29, 36]. In Section 5, we give a heuristic
explanation of some of the results proven in [26], which can be seen as the analogous of
the results of Section 3 in dimension greater than 1. Finally, some open problems are
presented in Section 6.

2. The Peierls-Nabarro model

The Peierls-Nabarro model is a phase field model for dislocation dynamics incorporating
atomic features into continuum framework. In a phase field approach, the dislocations are
represented by transition of a continuous field. We briefly review the model. There are two
basic types of dislocations: the edge dislocation and the screw dislocation. In both cases
the motion of a dislocation is a result of shear stress, but for a screw dislocation, the defect
line movement is perpendicular to direction of the stress and the atom displacement, while
for an edge dislocations it is parallel, see [23] for more details. As an example, consider
an edge dislocation in a crystal with simple cubic lattice. In a Cartesian system of
coordinates x1x2x3, we assume that the dislocation is located in the slip plane x1x2 (where
the dislocation can move) and that the Burgers’ vector (i.e. a fixed vector associated to
the dislocation) is in the direction of the x1 axis. We write this Burgers’ vector as be1
for a real b. The disregistry of the upper half crystal {x3 > 0} relative to the lower half
{x3 < 0} in the direction of the Burgers’ vector is u(x1, x2), where u is a phase parameter
between 0 and b. Then the dislocation loop can be for instance localized by the level set
u = b/2. For a closed loop, we expect to have u ' b inside the loop and u ' 0 far outside
the loop. In the Peierls-Nabarro model, the total energy is given by

(2.1) E = Eel + Emis.



4 STEFANIA PATRIZI

In (2.1), Eel is the elastic energy induced by the dislocation, and Emis is the so called
misfit energy due to the nonlinear atomic interaction across the slip plane,

Emis(u) =

∫
R2

W (u(x)) dx with x = (x1, x2),

where W (u) is the interplanar potential. In the classical Peierls-Nabarro model [34, 31],
W (u) is approximated by the sinusoidal potential

W (u) =
µb2

4π2d

(
1− cos

(
2πu

b

))
,

where d is the lattice spacing perpendicular to the slip plane.

The elastic energy Eel induced by the dislocation is (for X = (x, x3) with x = (x1, x2))

Eel(u, U) =
1

2

∫
R3

e : Λ : e dX with e = e(U)− u(x)δ0(x3)e
0,

and  e(U) = 1
2

(
∇U + (∇U)T

)
e0 = 1

2
(e1 ⊗ e3 + e3 ⊗ e1)

where U : R3 → R3 is the displacement and Λ = {Λijkl} are the elastic coefficients.
Given the field u, we minimize the energy Eel(u, U) with respect to the displacement U
and define

Eel(u) = inf
U
Eel(u, U).

Following the proof of Proposition 6.1 (iii) in [3], we can see that (at least formally)

Eel(u) = −1

2

∫
R2

(c0 ? u)u

where c0 is a certain kernel. In the case of isotropic elasticity, we have

Λijkl = λδijδkl + µ (δikδjl + δilδjk)

where λ, µ are the Lamé coefficients. Then the kernel c0 can be written (see Proposition
6.2 in [3], translated in our framework):

c0(x) =
µ

4π

(
∂22

1

|x|
+ ω∂11

1

|x|

)
with ω =

1

1− ν
and ν =

λ

2(λ+ µ)

where ν ∈ (−1, 1/2) is called the Poisson ratio.
The equilibrium configuration of the edge dislocation is obtained by minimizing the

total energy with respect to u, under the constraint that far from the dislocation core,
the function u tends to 0 in one half plane and to b in the other half plane. In particular,
the phase transition u is then solution of the following equation

(2.2) Is[u] = W ′(u) on RN ,

where

(2.3) Is[u] = PV c0 ? u = PV

∫
RN

u(x+ y)− u(x)

|y|N+2s
g

(
y

|y|

)
dy,
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where PV stands for principal value, s = 1
2
, N = 2 and g(z1, z2) = µ

4π
((2ω − 1)z21 + (2− ω)z22).

This operator is known as anisotropic (if g 6≡ constant) Lévy operator (of order 2s=1). If

ω = 1 and µ = 2, then I 1
2

= −(−∆)
1
2 (isotropic case). In that special case, we recall that

the solution u of (2.2) satisfies u(x) = ũ(x, 0) where ũ(X) is the solution of (see [27, 19])
∆ũ = 0 in {x3 > 0}

∂ũ

∂x3
= W ′(ũ) on {x3 = 0} .

Moreover, we have in particular an explicit solution for b = 1, d = 2 (with W ′(ũ) =
1
2π

sin(2πũ))

(2.4) ũ(X) =
1

2
+

1

π
arctan

(
x1

x3 + 1

)
.

In the original Peierls-Nabarro model, the dislocation line is assumed to be straight, say
perpendicular to the x1 axis. In this simplified case, the displacement is a function of only
one variable and the phase field function satisfies (2.2) with N = 1. It is easy to check
that we can recover the explicit solution found in Nabarro [31] by rescaling (2.4):

u(x) =
b

2
+
b

π
arctan

(
2(1− ν)x1

d

)
(edge dislocation)

u(x) =
b

2
+
b

π
arctan

(
2x2
d

)
(screw dislocation).

In a more general model, one can consider a potential W satisfying

(i) W (v + b) = W (v) for all v ∈ R;

(ii) W (bZ) = 0 < W (a) for all a ∈ R \ bZ.
(2.5)

The periodicity of W reflects the periodicity of the crystal, while the minimum property
is consistent with the fact that the perfect crystal is assumed to minimize the energy. We
can assume wlog that b = 1. Then the 1-D phase transition is solution to:

(2.6)


Is[u] = W ′(u) in R
u′ > 0 in R

lim
x→−∞

u(x) = 0, lim
x→+∞

u(x) = b, u(0) =
1

2
.

The existence of a unique solution of (2.6), when Is = −(−∆)s and under an additional
non degeneracy assumption on the second derivative of the potential, has been proven
independently by Palatucci, Savin and Valdinoci in [33] and by Cabré and Y. Sire in [7]
for any s ∈ (0, 1). Asymptotic estimates for u and u′ are given in [33]. Finer estimates on
u are shown in [13] and [12] respectively when s ∈

[
1
2
, 1
)

and s ∈
(
0, 1

2

)
. We collect these

results in the following lemma
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Lemma 2.1. Assume g ≡ 1 and

(2.7)



W ∈ C3,α(R) for some 0 < α < 1

W (v + 1) = W (v) for any v ∈ R
W = 0 on Z
W > 0 on R \ Z
W ′′ > 0 on Z.

Then there exists a unique solution u ∈ C2,α(R) of (2.6). Moreover, there exists a constant
C > 0 and κ > 2s (only depending on s) such that

(2.8)

∣∣∣∣u(x)−H(x) +
1

2sW ′′(0)

x

|x|2s+1

∣∣∣∣ 6 C

|x|κ
, for |x| > 1,

and

(2.9) |u′(x)| 6 C

|x|1+2s
for |x| > 1,

where H is the Heaviside function.

According to [13], the constant κ in (2.8) can be chosen to be optimal equal to 1 + 2s.
Remark that when g ≡ 1, then −Is = C−1N,s(−∆)s, for a suitable constant CN,s depending
on N and s.

In the face cubic structured (FCC) observed in many metals and alloys, dislocations
move at low temperature on the slip plane. A collection of dislocations curves all contained
in a single slip plane x1x2, and moving in a landscape with periodic obstacles (that can
be for instance precipitates in the material) are represented by a single phase parameter
u(t, x1, x2) defined on the plane x1x2. The dynamics of dislocations is then described by
the evolutive version of the Peierls-Nabarro model (see for instance [30] and [11]):

(2.10) ∂tu = Is[u(t, ·)]−W ′ (u) + σobst
13 (t, x) in R+ × RN

with the physical dimension N = 2. In the model, the component σobst
13 of the stress

(evaluated on the slip plane) has been introduced to take into account the shear stress
not created by the dislocations themselves. This shear stress is created by the presence
of the obstacles and the possible external applied stress on the material.

3. From the Peierls-Nabarro model to the Discrete Dislocation
Dynamics model

The evolutive Peierls-Nabarro model (2.10) in dimension N = 1, describes at micro-
scopic scale the dynamics of a collection of parallel and straight edge dislocations all lying
in the same slip plane x1x2. Suppose that the dislocation lines are perpendicular to the
x1 axis, then, after a section of a three-dimensional crystal with the plane x1x3, they can
be identified with points lying in the x1 axis. We will refer to them as particles. We
want to identify at a larger scale, the mesoscopic one, an evolution model for the Discrete
Dislocation Dynamics. In the entire section we will assume that g ≡ 1, that is Is is, up
to a multiplicative constant, the operator −(−∆)s. Assume in addition that the exterior
stress in (2.10) has the following form σobst

13 = ε2sσ(ε1+2st, εx). We perform the following
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rescaling of the solution u of (2.10)

vε(t, x) = u

(
t

ε1+2s
,
x

ε

)
,

where ε > 0 is a small parameter representing the ratio between microscopic scale and
the mesoscopic scale. Then, the function vε(t, x) solves

(3.1)

(vε)t =
1

ε

(
Is[vε]−

1

ε2s
W ′(vε) + σ(t, x)

)
in (0,+∞)× R

vε(0, ·) = v0ε on R,

for a suitable initial condition to be chosen. Assume that the potential W satisfies (2.7).
We suppose in addition that σ satisfies

(3.2)


σ ∈ BUC([0,+∞)× R) and for some M > 0 and α ∈ (s, 1)

‖σx‖L∞([0,+∞)×R) + ‖σt‖L∞([0,+∞)×R) 6M

|σx(t, x+ h)− σx(t, x)| 6M |h|α, for every x, h ∈ R and t ∈ [0,+∞).

Given x01 < x02 < ... < x0N , we say that the function u
(
x−x0i
ε

)
, where u is the solution of

(2.6), is a transition layer centered at x0i and positively oriented. Similarly, we say that the

function u
(
x0i−x
ε

)
−1 is a transition layer centered at x0i and negatively oriented. Then the

positively oriented transition layer connects the “rest states” 0 and 1, while the negatively
oriented one connects 0 with −1. Remark that, since the equation in (2.6) is invariant by
translation, the potential W is 1-periodic and Is[u(−·)](x) = Is[u(·)](−x), we have that

u
(
ζ x−x

0

ε

)
− k is solution of the same equation for any x0 ∈ R, k ∈ Z and ζ ∈ {−1, 1}.

The positively (resp., negatively) oriented transition layer identifies a dislocation particle
located at the position x0i with Burgers’ vector e1 (resp., −e1). We consider as initial
condition in (3.1) the state obtained by superposing N copies of the transition layer,
centered at x01, ..., x

0
N , N −K of them positively oriented and the remaining K negatively

oriented, that is

(3.3) v0ε(x) =
ε2s

W ′′(0)
σ(0, x) +

N∑
i=1

u

(
ζi
x− x0i
ε

)
−K,

where ζ1, ..., ζN ∈ {−1, 1},
N∑
i=1

(ζi)
− = K, 0 6 K 6 N . Here, we denote by (ζ)− the

function defined by: (ζ)− = 0 if ζ > 0 and (ζ)− = ζ if ζ < 0. The first term on the
right-hand side of (3.3) takes into account the influence of the exterior stress σ. The
initial condition (3.3) models an initial configuration in which there are N parallel and
straight edge dislocation lines, all lying in the same slip plane, x1x2, N −K of them with
the same Burgers’ vector e1, the remaining K with Burgers’ vector −e1.

Let us introduce the solution (xi(t))i=1,...,N to the system

(3.4)

ẋi = γ

(∑
j 6=i

ζiζj
xi − xj

2s|xi − xj|1+2s
− ζiσ(t, xi)

)
in (0, Tc)

xi(0) = x0i ,
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where γ :=

∫
R

(u′(x))2dx

−1 , with u solution of (2.6). The physical properties of

the singular potential of this ODE’s system depend on the orientation of the dislocation
function at the transition points. Namely, if the particles xi and xi+1 have the same
orientation, i.e., ζiζi+1 = 1, then the potential induces a repulsion between them. Con-
versely, when they have opposite orientation, i.e., ζiζi+1 = −1, then the potential becomes
attractive, and the two particles may collide in a finite time Tc. Therefore, (0, Tc) is the
maximal interval where the system (3.4) is well defined. In formulas, in the collision case
we have that xi(t) 6= xi+1(t) for any t ∈ [0, Tc) and any i = 1, . . . , N , with

(3.5) lim
t→T−c

xi0(t) = lim
t→T−c

xi0+1(t),

for some i0 ∈ {1, . . . , N}. Estimates of the collision time in the case of particles with
alternating orientations and in the case in which two consecutive particles with opposite
orientation are sufficiently close at the initial time, are given in [35].

We are now ready, to describe the asymptotic behavior of the dislocation function vε.
For small ε, the solution vε of (3.1)-(3.3) approaches a piecewise constant function. The
plateaus of this asymptotic limit correspond to the periodic sites induced by the crystalline
structure, but its jump points evolve in time. Roughly speaking, one can imagine that
these points behave like a particle system driven by the system of ordinary differential
equations (3.4). System (3.4) can be interpreted as a mesoscopic model for the Discrete
Dislocation Dynamics.

Let us state the result precisely. First, we recall that the (upper and lower) semi-
continuous envelopes of a function v are defined as

v∗(t, x) := lim sup
(t′,x′)→(t,x)

v(t′, x′)

and

v∗(t, x) := lim inf
(t′,x′)→(t,x)

v(t′, x′).

Theorem 3.1 (Theorem 1.1, [35]). Assume that (2.7), (3.2) and (3.3) hold, and let

(3.6) v0(t, x) =
N∑
i=1

H(ζi(x− xi(t)))−K,

where H is the Heaviside function and (xi(t))i=1,...,N is the solution to (3.4). Then, for
every ε > 0 there exists a unique solution vε to (3.1). Furthermore, as ε → 0+, the
solution vε exhibits the following asymptotic behavior:

(3.7) lim sup
(t′,x′)→(t,x)

ε→0+

vε(t
′, x′) 6 (v0)

∗(t, x)

and

(3.8) lim inf
(t′,x′)→(t,x)

ε→0+

vε(t
′, x′) > (v0)∗(t, x),

for any (t, x) ∈ [0, Tc)× R.
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Theorem 3.1 was already proven in [19, 13, 12] respectively in the case s = 1
2
, s ∈

(
1
2
, 1
)

and s ∈
(
0, 1

2

)
for a collection of dislocation lines all with the same orientation, i.e,

K = 0. In this particular case the particles points have the tendency of repel each other,
so collisions do not occur, i.e, Tc = +∞.

Let us now give an heuristic explanation of the result of Theorem 3.1.

3.1. Heuristics of the dynamics. This subsection is contained in [35]. We think that
it could be useful to understand the heuristic derivation of (3.4) in the simpler setting of
two particles with different orientations (i.e. N = 2 and K = 1).

For this, let u be the solution of (2.6). Let us introduce the notation

uε,1(t, x) := u

(
x− x1(t)

ε

)
, uε,2(t, x) := u

(
x2(t)− x

ε

)
− 1,

and with a slight abuse of notation

u′ε,1(t, x) := u′
(
x− x1(t)

ε

)
, u′ε,2(t, x) := u′

(
x2(t)− x

ε

)
.

Let us consider the following ansatz for vε

vε(t, x) ' uε,1(t, x) + uε,2(t, x) = u

(
x− x1(t)

ε

)
+ u

(
x2(t)− x

ε

)
− 1.

Then, we compute

(vε)t = −u′
(
x− x1(t)

ε

)
ẋ1(t)

ε
+ u′

(
x2(t)− x

ε

)
ẋ2(t)

ε

= −u′ε,1(t, x)
ẋ1(t)

ε
+ u′ε,2(t, x)

ẋ2(t)

ε
,

and using the equation (2.6) and the periodicity of W

Isvε(t, x) =
1

ε2s
Isu

(
x− x1(t)

ε

)
+

1

ε2s
Isu

(
x2(t)− x

ε

)
=

1

ε2s
W ′
(
u

(
x− x1(t)

ε

))
+

1

ε2s
W ′
(
u

(
x2(t)− x

ε

))
=

1

ε2s
W ′(uε,1(t, x)) +

1

ε2s
W ′(uε,2(t, x)).

By inserting into (3.1), we obtain

−u′ε,1
ẋ1
ε

+ u′ε,2
ẋ2
ε

=
1

ε2s+1

(
W ′(uε,1) +W ′(uε,2)−W ′(uε,1 + uε,2)

)
+
σ

ε
.(3.9)

Now we make some observations on the asymptotics of the potential W . First of all, we
notice that the periodicity of W and the asymptotic behavior of u imply

(3.10)

∫
R

W ′(u(x))u′(x)dx =

∫
R

d

dx
W (u(x))dx = W (1)−W (0) = 0,
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and similarly

(3.11)

∫
R

W ′′(u(x))u′(x)dx = 0.

Next, we use estimate (2.8) and make a Taylor expansion of W ′ at 0 to compute for x 6= x2

W ′
(
u

(
x2 − x
ε

))
' W ′

(
H

(
x2 − x
ε

)
+

ε2s(x− x2)
2sW ′′(0)|x− x2|1+2s

)
= W ′

(
ε2s(x− x2)

2sW ′′(0)|x− x2|1+2s

)
' W ′′(0)

ε2s(x− x2)
2sW ′′(0)|x− x2|1+2s

=
ε2s(x− x2)

2s|x− x2|1+2s
.

So, we use the substitution y = (x− x1)/ε to see that

1

ε

∫
R

W ′(uε,2(t, x))u′ε,1(t, x)dx ' 1

ε

∫
R

ε2s(x− x2)
2s|x− x2|1+2s

u′
(
x− x1
ε

)
dx

=

∫
R

ε2s(εy + x1 − x2)
2s|εy + x1 − x2|1+2s

u′(y)dy

' ε2s(x1 − x2)
2s|x1 − x2|1+2s

∫
R

u′(y)dy

=
ε2s(x1 − x2)

2s|x1 − x2|1+2s
,

if x1 6= x2. Hence

(3.12)
1

ε2s+1

∫
R

W ′(uε,2(t, x))u′ε,1(t, x)dx ' x1 − x2
2s|x1 − x2|1+2s

,
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if x1 6= x2. We use again the substitution y = (x− x1)/ε, (3.10) and (3.11) to get

1

ε

∫
R

W ′(uε,1(t, x) + uε,2(t, x))u′ε,1(t, x)dx

' 1

ε

∫
R

W ′
(
u

(
x− x1
ε

)
+H(x) +

ε2s(x− x2)
2sW ′′(0)|x− x2|1+2s

)
u′
(
x− x1
ε

)
dx

=

∫
R

W ′
(
u(y) +

ε2s(εy + x1 − x2)
2sW ′′(0)|εy + x1 − x2|1+2s

)
u′(y)dy

'
∫
R

W ′(u(y))u′(y)dy +

∫
R

W ′′(u(y))
ε2s(εy + x1 − x2)

2sW ′′(0)|εy + x1 − x2|1+2s
u′(y)dy

' ε2s(x1 − x2)
2sW ′′(0)|x1 − x2|1+2s

∫
R

W ′′(u(y))u′(y)dy

= 0.

We deduce

(3.13)
1

ε1+2s

∫
R

W ′(uε,1(t, x) + uε,2(t, x))u′ε,1(t, x)dx ' 0.

Moreover, we have

1

ε

∫
R

σ(t, x)u′ε,1(t, x)dx =

∫
R

σ(t, εy + x1)u
′(y)dy

' σ(t, x1)

∫
R

u′(y)dy

= σ(t, x1).

(3.14)

Finally

(3.15)
1

ε

∫
R

(u′ε,1(t, x))2dx =

∫
R

(u′(y))2dy = γ−1,

and using (2.9)

1

ε

∫
R

u′ε,1(t, x)u′ε,2(t, x)dx ' 1

ε

∫
R

u′
(
x− x1
ε

)
ε1+2s

|x− x2|1+2s
dx

=

∫
R

u′(y)
ε1+2s

|εy + x1 − x2|1+2s
dy

' ε1+2s

|x1 − x2|1+2s

∫
R

u′(y)dy

' 0,

(3.16)

if x1 6= x2. Now we multiply (3.9) by u′ε,1(t, x), we integrate on R and we use (3.10),
(3.12), (3.13), (3.14), (3.15) and (3.16), to get
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−γ−1ẋ1 =
x1 − x2

2s|x1 − x2|1+2s
+ σ(t, x1).

A similar equation is obtained if we multiply (3.9) by u′ε,2(t, x) and integrate on R. There-
fore we get the system

(3.17)


ẋ1 = −γ x1 − x2

2s|x1 − x2|1+2s
− γσ(t, x1)

ẋ2 = −γ x2 − x1
2s|x2 − x1|1+2s

+ γσ(t, x2),

which is (3.4) with N = 2 and K = 1. This is a heuristic justification of the link between
the partial differential equation in (3.1) and the system of ordinary differential equations
in (3.4).

3.2. Dislocation dynamics after the collision time. System (3.4), describing at
mesoscopic scale the dynamics of dislocation lines, becomes singular at the collision time
t = Tc, and so no information about the dynamics of dislocations for times bigger than
Tc can be inferred from it. To overcome this difficulty the idea consists in looking instead
to the solution of the PDE (3.1) for small but fixed ε. Indeed such a function vε is well
defined for any positive time. For simplicity here we present only the cases with two and
three particles. We refer to [38] for the general case of N particles. Roughly speaking,
in case of two particles, the collision of the two particles “annihilate” all the dynamics,
nothing more is left and the system relaxes to the trivial equilibrium.

The case of three particles is, on the other hand, different from the case of two particles,
since the steady state associated with the case of three particles is the heteroclinic orbit
(and not the trivial function as in the case of two particles). In the case of three particles,
one has that two particles “annihilate” each other, but the third particle “survives”, and
this produces a jump in the dislocation function – indeed, as explained in the previous
sections, these “purely mathematical” particles correspond to an excursion of the disloca-
tion, from two equilibria, which is modeled by the standard transition layer in (2.6). The
precise results, which are proven in [37], are stated in the next two subsections.

3.3. The case of two transition layers. Given x01 < x02 let us consider as initial con-
dition in (3.1)

(3.18) v0ε(x) =
ε2s

W ′′(0)
σ(0, x) + u

(
x− x01
ε

)
+ u

(
x02 − x
ε

)
− 1,

where u is the solution of (2.6).
In general, it may happen that Tc = +∞, i.e. no collision occurs. On the other hand,

it can be shown that when either the external stress is small or the particles are initially
close to collision, then Tc < +∞. More precisely, in [36] we proved that if the following
condition is satisfied

either σ 6 0 or x02 − x01 <
(

1

2s‖σ‖∞

) 1
2s

,

then the collision time Tc is finite.
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In the setting of finite collision time, the dislocation function vε, after a time Tε, which is
only slightly larger than the collision time Tc, becomes small with ε. Indeed, the following
two theorems are proven in [37].

Theorem 3.2 (Theorem 1.1, [37]). Assume that (2.7), (3.2) hold and Tc < +∞. Let vε
be the solution of (3.1)- (3.18). Then there exists ε0 > 0 such that for any ε < ε0 there
exist Tε, %ε > 0 such that

Tε = Tc + o(1), %ε = o(1) as ε→ 0

and

(3.19) vε(Tε, x) 6 %ε for any x ∈ R.

The result above can be made precise by saying that, if the system is not subject to any
external stress, then the dislocation function vε decays in time exponentially fast. More
precisely, we have:

Theorem 3.3 (Theorem 1.2, [37]). Assume that (2.7), (3.2) hold and that σ ≡ 0. Let
vε be the solution of (3.1)- (3.18). Then there exist ε0 > 0 and c > 0 such that for any
ε < ε0 we have

(3.20) |vε(t, x)| 6 %εe
c Tε−t
ε2s+1 , for any x ∈ R and t > Tε,

where Tε and %ε are given in Theorem 3.2.

The evolution of the two particle system and of the associated dislocation function, as
obtained in Theorems 3.2 and 3.3, is described in Figure 1.

t=0

x
1

x
2

0 0

εt=T

ρ
ε

εt>T

Figure 1: (Figure 1 in [37]) Evolution of the dislocation function in case of two particles.



14 STEFANIA PATRIZI

3.4. The case of three transition layers. Next, we consider the case in which the
initial condition in (3.1) is a superposition of three transition layers with different orien-
tation. Precisely, let ζ1 = 1, ζ2 = −1, ζ3 = 1. Given x01 < x02 < x03, let us consider as
initial condition in (3.1)

(3.21) v0ε(x) =
ε2s

W ′′(0)
σ(0, x) +

3∑
i=1

u

(
ζi
x− x0i
ε

)
− 1,

where u is the solution of (2.6).

Theorem 3.4 (Theorem 1.3, [37]). Assume that (2.5), (3.2), hold and Tc < +∞. Let vε
be the solution of (3.1)-(3.21). Then there exists ε0 > 0 such that for any ε < ε0 there
exist T 1

ε , T
2
ε , %ε > 0 and yε, zε such that

T 1
ε , T

2
ε = Tc + o(1), %ε = o(1) as ε→ 0,

|zε − yε| = o(1) as ε→ 0

and for any x ∈ R

(3.22) vε(T
1
ε , x) 6 u

(
x− yε
ε

)
+ %ε

and

(3.23) vε(T
2
ε , x) > u

(
x− zε
ε

)
− %ε,

where u is the solution of (2.6).

Next result is the analogue of Theorem 3.3 in the three particle setting. Roughly speak-
ing, it says that, after a small transition time after the collision, the dislocation function
relaxes towards the standard layer solution exponentially fast. The formal statement is
the following:

Theorem 3.5 (Theorem 1.4, [37]). Assume that (2.5), (3.2), hold and that σ ≡ 0. Let
vε be the solution of (3.1)-(3.21). Then there exist ε0 > 0 and µ > 0 such that for any
ε < ε0 there exists Kε = o(1) as ε→ 0 such that

vε(t, x) 6 u

x− yε +Kε%ε

(
1− e−

µ(t−T1
ε )

ε2s+1

)
ε

+ %εe
−µ(t−T

1
ε )

ε2s+1 , for any x ∈ R and t > T 1
ε ,

(3.24)

(3.25)

vε(t, x) > u

x− zε −Kε%ε

(
1− e−

µ(t−T2
ε )

ε2s+1

)
ε

− %εe−µ(t−T2
ε )

ε2s+1 , for any x ∈ R and t > T 2
ε

where T 1
ε , T

2
ε , %ε, yε and zε are given in Theorem 3.4 and u is the solution of (2.6).

Corollary 3.6 (Corollary 1.5, [37]). Under the assumptions of Theorem 3.5, there exists
ε0 > 0 such that for any ε < ε0, there exist a sequence tk → +∞ as k → +∞, and a
point xε ∈ R with

(3.26) yε −Kε%ε < xε < zε +Kε%ε,



CRYSTAL DISLOCATION DYNAMICS 15

such that

(3.27) vε(tk, x)→ u

(
x− xε
ε

)
as k → +∞,

where yε, zε, Kε and %ε are given in Theorem 3.4 and u is the solution of (2.6).

The results of Theorems 3.4 and 3.5 and Corollary 3.6 are represented in Figure 2,
where we sketched the evolution of the dislocation function and of the associated particle
system in the case of three particles with alternate orientations.

x x x
1 2 3

000

t=Tε

ρ
ε

t=0

t>T2
ε

zx
εε

2

Figure 2: (Figure 2 in [37]) Evolution of the dislocation function in case of three particles.

It is worth to point out that the case of three particles provides structurally richer phe-
nomena than the case of two particles. Indeed, in the case of three particles we have two
different types of collision: simple and triple. The simple collision occurs when only two
particles collide at time Tc, i.e., either

x1(Tc) = x2(Tc) and x3(Tc) > x2(Tc),

or

x2(Tc) = x3(Tc) and x1(Tc) < x2(Tc).

In the triple collision case, the three particles collide together and simultaneously, i.e.

x1(Tc) = x2(Tc) = x3(Tc).

In [35], we proved that if σ ≡ 0, then for any choice of the initial condition (x01, x
0
2, x

0
3) we

have a collision in a finite time. Moreover a triple collision is possible if and only if

x02 − x01 = x03 − x02.
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4. From the Peierls-Nabarro model to the Dislocation Density Model

Consider the evolutive Peierls-Nabarro model in any dimension (2.10), where Is is the
anisotropic Lévy operator of order 2s, defined in (2.3). Let us first consider the case s = 1

2
,

which is studied in [29, 28].
We want to identify at macroscopic scale an evolution model for the dynamics of a

density of dislocations. We consider the following rescaling

uε(t, x) = εu

(
t

ε
,
x

ε

)
,

where ε is the ratio between the typical length scale for dislocation (of the order of
the micrometer) and the typical macroscopic length scale in mechanics (millimeter or
centimeter). Moreover, assuming suitable initial data

(4.1) u(0, x) =
1

ε
u0(εx) on RN ,

(where u0 is a regular bounded function), we see that the function uε is solution of

(4.2)

{
∂tu

ε = I1[uε(t, ·)]−W ′ (uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN .

This indicates that at the limit ε → 0, we will recover a model for the dynamics of
(renormalized) densities of dislocations. For N = 2, (2.10) with initial condition (4.1)
models, at microscopic scale, the dynamics of a collections of edge dislocation lines moving
in the same slip plane, with same Burgers’ vectors, such that the number of dislocations
is of the order of 1/ε per unit of macroscopic scale.

Here, we assume that the function g in (2.3) satisfies

(H1) g ∈ C(SN−1), g > 0, g even.

On the functions W , σ and u0 we assume:

(H2) W ∈ C1,1(R) and W (v + 1) = W (v) for any v ∈ R;
(H3) σ ∈ C0,1(R+ × RN) and σ(t+ 1, x) = σ(t, x), σ(t, x+ k) = σ(t, x) for any k ∈ ZN

and (t, x) ∈ R+ × RN ;
(H4) u0 ∈ W 2,∞(RN).

Identifying the limit solution of the function uε, when ε→ 0, means solving an homog-
enization problem. In homogenization, both the limit function and the equation satisfied
by it are unknown of the problem. In [29], we show that the limit u0 of uε as ε→ 0 exists
and is the unique solution of the homogenized problem

(4.3)

{
∂tu = H(∇xu, I1[u(t, ·)]) in R+ × RN

u(0, x) = u0(x) on RN ,

for some continuous function H usually called effective Hamiltonian. The function u0

will be interpreted later as a macroscopic plastic strain satisfying the macroscopic plastic
flow rule (4.3). Moreover Is[u0] will be the stress created by the macroscopic density of
dislocations.
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As usual in periodic homogenization, the limit equation is determined by a cell problem.
In our case, such a problem is for any p ∈ RN and L ∈ R the following:

(4.4)

{
λ+ ∂τv = I1[v(τ, ·)] + L−W ′(v + λτ + p · y) + σ(τ, y) in R+ × RN

v(0, y) = 0 on RN ,

where λ = λ(p, L) is the unique number for which there exists a solution v of (4.4) which
is bounded on R+ × RN . In order to solve (4.4), we show for any p ∈ RN and L ∈ R the
existence of a unique solution of

(4.5)

{
∂τw = I1[w(τ, ·)] + L−W ′(w + p · y) + σ(τ, y) in R+ × RN

w(0, y) = 0 on RN ,

and we look for some λ ∈ R for which w − λτ is bounded. Precisely we have:

Theorem 4.1 (Theorem 1.1, [29]). Assume (H1)-(H4). For L ∈ R and p ∈ RN , there
exists a unique viscosity solution w ∈ Cb(R+ × RN) of (4.5) and there exists a unique

λ ∈ R such that w satisfies: w(τ,y)
τ

converges towards λ as τ → +∞, locally uniformly

in y. The real number λ is denoted by H(p, L). The function H(p, L) is continuous on
RN × R and non-decreasing in L.

In Theorem 4.1, we denoted by Cb(R+×RN) the set of continuous functions on R+×RN

which are bounded on (0, T )×RN for any T > 0. The non-local equation (4.2) is related
to the local equation {

∂tu
ε = F

(
x
ε
, u

ε

ε
,∇uε

)
in R+ × RN

uε(0, x) = u0(x) on RN ,

that was studied in [24] under the assumption that F (x, u, p) is periodic in (x, u) and
coercive in p. As in the local case, the presence of the term uε

ε
in (4.2) does not allow to

use directly the bounded solution of (4.4), usually called corrector. Indeed, a corrector in
dimension N + 1 needs to be introduced. Nevertheless, we have the following convergence
result:

Theorem 4.2 (Theorem 1.2, [29]). Assume (H1)-(H4). The solution uε of (4.2) converges
towards the solution u0 of (4.3) locally uniformly in (t, x), where H is defined in Theorem
4.1.

4.1. Viscosity solutions for non-local operators. The classical notion of viscosity
solution can be adapted for a quite general class of equations involving non-local operators,
which includes equations (4.2) and (4.3), see for instance [4]. For equation (4.3), the
property of the effective Hamiltonian H(p, L) to be non-decreasing with respect to L is a
sort of ellipticity condition, which allows to define a well-posed notion of viscosity solution.
The definition of viscosity solution for equations involving the Lévy operator Is, comes
from this simple observation: for a smooth function φ, one has that, for any r > 0,

PV

∫
|z|6r

(φ(x+ z)− φ(x))
1

|z|N+2s
g

(
z

|z|

)
dz

=PV

∫
|z|6r

(φ(x+ z)− φ(x)−∇φ(x) · z)
1

|z|N+2s
g

(
z

|z|

)
dz,
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as

PV

∫
|z|6r

∇(φ(x) · z)
1

|z|N+2s
g

(
z

|z|

)
dz = lim

δ→0+

∫
δ<|z|6r

∇(φ(x) · z)
1

|z|N+2s
g

(
z

|z|

)
dz = 0,

being the integrand an odd function. Now, if φ is sufficiently regular, then the following
integrand is convergent,∫

|z|6r

(φ(x+ z)− φ(x)−∇φ(x) · z)
1

|z|N+2s
g

(
z

|z|

)
dz.

On the other hand, if φ is bounded, the following integral is convergent too∫
|z|>r

(φ(x+ z)− φ(x))
1

|z|N+2s
g

(
z

|z|

)
dz.

Taking into account this simple remark, a well-posed definition of viscosity solution for a
general non-local equation with associated initial condition can be given. Consider

(4.6)

{
ut = F (t, x, u,Du, Is[u]) in R+ × RN

u(0, x) = u0(x) on RN ,

where F (t, x, u, p, L) is continuous and non-decreasing in L. Set

I1,rs [φ, x] :=

∫
|z|6r

(φ(x+ z)− φ(x)−∇φ(x) · z)
1

|z|N+2s
g

(
z

|z|

)
dz,

I2,rs [φ, x] :=

∫
|z|>r

(φ(x+ z)− φ(x))
1

|z|N+2s
g

(
z

|z|

)
dz.

Denote by USCb(R+×RN) (resp., LSCb(R+×RN)) the set of upper (resp., lower) semi-
continuous functions on R+ × RN which are bounded on (0, T )× RN for any T > 0.

Definition 4.1 (r-viscosity solution). A function u ∈ USCb(R+ × RN) (resp., u ∈
LSCb(R+ × RN)) is a r-viscosity subsolution (resp., supersolution) of (4.6) if u(0, x) 6
(u0)

∗(x) (resp., u(0, x) > (u0)∗(x)) and for any (t0, x0) ∈ R+ × RN , any τ ∈ (0, t0) and
any test function φ ∈ C2(R+ × RN) such that u − φ attains a local maximum (resp.,
minimum) at the point (t0, x0) on Q(τ,r)(t0, x0), then we have

∂tφ(t0, x0)− F (t0, x0, u(t0, x0),∇xφ(t0, x0), I1,rs [φ(t0, ·), x0] + I2,rs [u(t0, ·), x0]) 6 0

(resp., > 0).

A function u ∈ Cb(R+×RN) is a r-viscosity solution of (4.6) if it is a r-viscosity sub and
supersolution of (4.6).

It is classical that the maximum in the above definition can be supposed to be global.
We have also the following property, see e.g., [4]:

Proposition 4.3 (Equivalence of the definitions). Assume F (t, x, u, p, L) continuous and
non-decreasing in L. Let r > 0 and r′ > 0. A function u ∈ USCb(R+ × RN) (resp.,
u ∈ LSCb(R+ × RN)) is a r-viscosity subsolution (resp., supersolution) of (4.6) if and
only if it is a r′-viscosity subsolution (resp., supersolution) of (4.6).
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The non-decreasing property of F (t, x, u, p, L) with respect to L is crucial to prove
comparison principles between viscosity sub and supersolutions. Comparison principles
for viscosity sub and supersolutions of non-local equations including (4.2) are proven for
instance in [20]. The comparison principle for (4.3) has been proven in [25]. Existence
of viscosity solutions for non-local equations for which the comparison principle holds,
follows by using the Perron’s method, after providing a suitable sub and supersolution.

4.2. Mechanical interpretation of the homogenization. Let us briefly explain the
meaning of the homogenization result. In the macroscopic model, the function u0(t, x)
can be interpreted as the plastic strain (localized in the slip plane {x3 = 0}). Then the
three-dimensional displacement U(t,X) is obtained as a minimizer of the elastic energy

U(t, ·) = arg min
Ũ
Eel(u0(t, ·), Ũ)

and the stress is
σ = Λ : e with e = e(U)− u0(t, x)δ0(x3)e

0.

Then the resolved shear stress is
I1[u0] = σobst

13 .

The homogenized equation (4.3), i.e.,

∂tu
0 = H(∇xu

0, I1[u0(t, ·)])
which is the evolution equation for u0, can be interpreted as the plastic flow rule in a
model for macroscopic crystal plasticity. This is the law giving the plastic strain velocity
∂tu

0 as a function of the resolved shear stress σobst
13 and the dislocation density ∇u0.

The typical example of such a plastic flow rule is the Orowan’s law:

H(p, L) ' |p|L.
This is also the law that we recover in dimension N = 1 in paper [29] in the case where
there are no obstacles (i.e., σobst

13 ≡ 0) and for small stress L and small density |p|.

4.3. The Orowan’s law. The limit equation of an homogenization problem is defined
through a cell problem, but its explicit expression is usually unknown. In [28] we are
able to explicitly characterize the effettive Hamiltonian H(p, L) defined in Theorem 4.1

for small values of p and L, in the case I1 = −(−∆)
1
2 , N = 1 and σ ≡ 0. In this setting,

equation (4.2) models the dynamics of parallel straight edge dislocation lines in the same
slip plane with the same Burgers’ vector, moving with self-interactions. In other words
equation (4.2) simply describes the motion of dislocations by relaxation of the total energy
(elastic + misfit). In [28] we study the behavior of H(p, L) for small p and L, and in this
regime we recover Orowan’s law, which claims that

(4.7) H(p, L) ' γ|p|L
for some constant of proportionality γ > 0. The precise result is stated in the following

Theorem 4.4 (Theorem 1.2, [28]). Assume g = 1
π

, N = 1, σ ≡ 0, W ∈ C4,α, for some

0 < α < 1, and (2.7). Let p0, L0 ∈ R. Then the function H defined in Theorem 4.1
satisfies

(4.8)
H(δp0, δL0)

δ2
→ γ|p0|L0 as δ → 0+ with γ =

∫
R

(u′)2

−1 ,
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where u is the solution of (2.6).

4.4. Heuristic for the proof of Orowan’s law.
Define u(τ, y) := w(τ, y) + py, where w is the corrector solution of (4.5). Then, u satisfies

(4.9)

{
∂τu = L+ I1[u(τ, ·)]−W ′(u) in R+ × R
u(0, y) = py on R.

Moreover, by Theorem 4.1, we have that

u(τ, y) ∼ py + λτ + bounded,

where λ = H(p, L). The idea underlying the proof of Orowan’s law is related to a fine
asymptotics of equation (4.9). From Theorem 3.1 we know that if u solves (4.9) with
L = δL0, i.e.

(4.10) ∂τu = δL0 + I1[u(τ, ·)]−W ′(u)

for a choice of initial data with a finite number of indices i:

u(0, y) =
δL0

W ′′(0)
+
∑
x0i>0

φ

(
y − x0i

δ

)
+
∑
x0i<0

(
φ

(
y − x0i

δ

)
− 1

)
then

uδ(t, x) := u

(
t

δ2
,
x

δ

)
→ u0(t, x) =

∑
x0i>0

H(x−xi(t))+
∑
x0i<0

(H(x− xi(t))− 1) as δ → 0

where H is the Heaviside function and with the dynamics

(4.11)


dxi
dt

= γ

(
−L0 +

1

π

∑
j 6=i

1

xi − xj

)

xi(0) = x0i .

System (4.11) is the (rescaled as here we have g = 1/π instead than g = 1) system (3.4),
with s = 1

2
and ζi = 1 for any i. Moreover for the choice p = δp0 with p0 > 0 and

x0i = i/p0 that we extend formally for all i ∈ Z, we see (at least formally) that

|u(0, y)− δp0y| 6 Cδ.

This suggests also that the infinite sum in (4.11) should vanish (by antisymmetry) and
then the mean velocity should be

dxi
dt
' −γL0

i.e., after scaling back

u(τ, y) ' δp0(y − c1τ) + bounded

with the velocity

c1 =
d(xi/δ)

d(t/δ2)
' −γL0δ

i.e.,

u(τ, y) ' δp0y + λτ + bounded with λ ' δ2γp0L0.
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We deduce that we should have

u(τ, y)

τ
→ λ ' δ2γp0L0 as τ → +∞.

We see that this λ = H(δp0, δL0) is exactly the one we expect asymptotically in Theorem
4.4 when p0 > 0.

4.5. Homogenization and Orowan’s law for anisotropic fractional operators of
any order. The results of [28, 29] have been generalized in [36] to Lévy operators of any
order 2s, with s ∈ (0, 1). In [36], for s > 1

2
we considered the following homogenization

problem:

(4.12)

{
∂tu

ε = ε2s−1Is[uε(t, ·)]−W ′ (uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN ,

and for s < 1
2
:

(4.13)

{
∂tu

ε = Is[uε(t, ·)]−W ′ ( uε
ε2s

)
+ σ

(
t
ε2s
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN .

Remark that the scalings for s > 1
2

and s < 1
2

are different. They formally coincide when

s = 1
2
. We proved that the solution uε of (4.12) converges as ε→ 0 to the solution u0 of

the homogenized problem

(4.14)

{
∂tu = H1(∇xu) in R+ × RN

u(0, x) = u0(x) on RN ,

with an effective Hamiltonian H1 which does not depend on Is anymore, while the solution
uε of (4.13) converges as ε→ 0 to u0 solution of the following

(4.15)

{
∂tu = H2(Is[u]) in R+ × RN

u(0, x) = u0(x) on RN ,

with an effective Hamiltonian H2 not depending on the gradient. That is, roughly speak-
ing, for any s ∈ (0, 1), the effective Hamiltonian is an operator of order min{2s, 1}, which
reveals the stronger non-local effects present in the case s < 1

2
. As before, the functions

H1 and H2 are determined by the following cell problem:

(4.16)

{
∂τw = Is[w(τ, ·)] + L−W ′(w + p · y) + σ(τ, y) in R+ × RN

w(0, y) = 0 on RN ,

and we look for some λ such that w − λτ is bounded. As in the case s = 1
2
, we proved

the following ergodic result.

Theorem 4.5 (Theorem 1.1 [36]). Assume (H1)-(H4). For L ∈ R and p ∈ RN , there
exists a unique viscosity solution w ∈ Cb(R+ × RN) of (4.5) and there exists a unique
λ ∈ R such that w satisfies:

w(τ, y)

τ
converges towards λ as τ → +∞, locally uniformly in y.
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The real number λ is denoted by H(p, L). The function H(p, L) is continuous on RN ×R
and non-decreasing in L.

Once the cell problem was solved, we could prove the following convergence results:

Theorem 4.6 (Theorem 1.2 [36]). Assume (H1)-(H4). The solution uε of (4.12) con-
verges towards the solution u0 of (4.14) locally uniformly in (t, x), where

H1(p) := H(p, 0)

and H(p, L) is defined in Theorem 4.5.

Theorem 4.7 (Theorem 1.3 [36]). Assume (H1)-(H4). The solution uε of (4.13) con-
verges towards the solution u0 of (4.15) locally uniformly in (t, x), where

H2(L) := H(0, L)

and H(p, L) is defined in Theorem 4.5.

We point out that the effective Hamiltonians H1 and H2 represent the speed of pro-
pagation of the dislocation dynamics according to (4.14) and (4.15). In particular, due
to Theorems 4.6 and 4.7, such speed only depends on the slope of the dislocation in the
weakly non-local setting s > 1

2
and only on an operator of order s of the dislocation in

the strongly non-local setting s < 1
2
.

Finally, when N = 1, Is = −(−∆)s and σ ≡ 0, and we make the further assumptions
(2.7) on the potential W , we proved the following extension of the Orowan’s law:

Theorem 4.8 (Theorem 1.4, [36]). Assume Is = −(−∆)s, N = 1, σ ≡ 0, W ∈ C4,α, for
some 0 < α < 1, (2.7), and W even when s ∈

(
0, 1

2

)
. Let p0, L0 ∈ R with p0 6= 0. Then

the function H defined in Theorem 4.5 satisfies

(4.17)
H(δp0, δ

2sL0)

δ1+2s
→ γ|p0|L0 as δ → 0+ with γ =

∫
R

(u′)2

−1 ,
where u is solution of (2.6).

5. Non-local Allen-Cahn equation

Imbert and Souganidis [26] have considered the following rescaled in time and space
version of the evolutive Peierl-Nabarro model in dimension N > 2: for t > 0 and x ∈ RN ,

(5.1) ∂tu+
1

εηε

{
−ε2sIs[uε] +W ′(uε)

}
= 0

where Is is the Lévy operator of order 2s ∈ (0, 2), introduced in (2.3), W ′ is a bistable
nonlinearity and the parameter ηε depends on s and it is defined as follows:

(5.2) ηε =


ε if s > 1

2
,

ε| log(ε)| if s = 1
2
,

ε2s if s < 1
2
.
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For our purposes, we assume that W satisfies (2.7). Let q be the phase transition function,
solution to: for e ∈ SN−1,

(5.3)


Ies [q] = W ′(q), in R
q′ > 0

limξ→−∞ q(ξ) = 0, limξ→+∞ q(ξ) = 1,

where

Ies [q](ξ) := PV

∫
RN

(q(ξ + e · z)− q(ξ))J(z)dz

and

(5.4) J(z) := g

(
z

|z|

)
1

|z|N+2s
.

When g ≡ cN,s, then Ies is actually independent of e and a solution is providing by
q(ξ) = u (ξ), where u is solution of (2.6). In [26] it is proven that when s > 1

2
, the

solution uε of the diffusion-reaction equation (4.2) with initial datum

(5.5) u0ε(x) = q

(
d0(x)

ε
,Dd0(x)

)
,

where d0 is the signed distance function to the boundary of a smooth set Ω0, can only
have, as ε→ 0, two limits: the stable equilibria of the bistable non-linearity W ′ in [0, 1],
i.e., 0 and 1. The resulting interface, ∂Ωt, evolves by anisotropic mean curvature. For
s < 1

2
only partial but significant results have been obtained. In the theory of crystal

dislocations when N = 2, ∂Ωt represents the dislocation line at time t moving on the slip
plane x1x2. In the one dimensional space, moving interfaces are points. Their dynamics is
then described by the system of ODE’s (3.4). In this section, we want to give a heuristic
proof of the results contained in [26]. Assume for simplicity g ≡ cN,s, then the phase
transition q is independent of the direction e. In this setting we have the following Ansatz
for uε:

uε(t, x) ∼ q

(
d(t, x)

ε

)
where d(t, x) is the signed distance function from the front that propagates starting from
the initial configuration Ω0. Close to the front, the distance function d is smooth in x and
|Dd| = 1, which implies in particular that D2dDd = 0. Inserting the derivatives of the
Ansatz into the equation (5.1), multiplying by ε and using equation (5.3), we get (close
to the front):

q̇

(
d(t, x)

ε

)
∂td(t, x) =

1

ηε

{
ε2sIs

[
q

(
d(t, ·)
ε

)]
(x)−W ′

(
q

(
d(t, x)

ε

))}
=

1

ηε

{
Is
[
q

(
d(t, ε·)
ε

)](x
ε

)
− Ies [q]

(
d(t, x)

ε

)}
.

(5.6)
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Let us introduce the notation ξ = d(t,x)
ε
, y = x

ε
and e = Dd(t, x). Then, we can write the

right-hand side of the previous equation as follows

Is
[
q

(
d(t, ε·)
ε

)]
(y)− Ies [q](ξ) = PV

∫
RN

[
q

(
d(t, x+ εz)

ε

)
− q(ξ + e · z)

]
J(z)dz

= PV

∫
RN

[q(ξ + e · z + εWε(t, x, z))− q(ξ + e · z)] J(z)dz,

where Wε(t, x, z) = 1
ε2

[d(t, x+ εz)− d(t, x)− εDd(t, x) · z]. Notice that Wε is bounded in
ε if d is C1,1 with respect to the space variable, in a neighborhood of x. Now, if the front
is smooth, for (t, x) close to the front, we can assume that the slow variables (t, x) and
the fast variable ξ are independent. Therefore, multiplying equation (5.6) by q̇(ξ) and
integrating in ξ, we get

(5.7) γ−1∂td(t, x)− 1

ηε
a(t, x, e) = 0,

where

(5.8) γ−1 :=

∫
R

(q̇)2(ξ)dξ,

(5.9) aε(t, x, e) =

∫
R

q̇(ξ)aε(t, x, ξ, e)dξ,

and

aε(t, x, ξ, e) = PV

∫
RN

[q(ξ + e · z + εWε(t, x, z))− q(ξ + e · z)] J(z)dz.

From Lemma 4 in [26], we know that when s > 1
2
, there is a matrix A depending on s

and N (but independent of e in the isotropic case), such that, as ε → 0, 1
ηε
aε (t, x, e) →

tr(AD2d(t, x)). Passing to the limit as ε→ 0 in (5.7), we find the following equation for d

(5.10) ∂td(t, x) = γtr(AD2d) = γtr

((
I − Dd⊗Dd

|Dd|2

)
AD2d

)
,

since D2dDd = 0. The mean curvature equation just obtained gives the propagation law
of the front. When s < 1

2
, the quantity 1

ηε
a (t, x, e) converges as ε → 0 to a fractional

mean curvature operator, as proven in Lemma 10 of [26]. So in this case one would get
(5.10) with the local mean curvature operator replaced by a fractional one.

Let us now state the precise result. To simplify the presentation, we consider the
isotropic case. For the anisotropic case we refer to [26].

Theorem 5.1 (Theorem 1, [26]). Let J be given by (5.4) with g ≡ cN,s and s ∈
[
1
2
, 1
)
. Let

uε be the unique solution of (5.1) with initial datum (5.5), where q(x, e) = q(x) = u(x) is
the solution of (2.6) and d0 is the signed distance function to the boundary of a smooth
set Ω0. Then, there exists a symmetric matrix A ∈ S(n) depending on q, s and N , such
that if u is the unique (generalized flow) solution of the geometric equation (5.10) with
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initial condition u(0, x) = d0(x), where γ is defined by (5.8), the function uε satisfies, for
t > 0, x ∈ RN , {

uε(t, x)→ 1 in {u(t, x) > 0}
uε(t, x)→ 0 in {u(t, x) < 0}

as ε→ 0.

Moreover both limits are local uniform.

6. Some open problems

A first open problem, to the best of our knowledge, is the extension of Theorem 5.1 to
the case s ∈

(
0, 1

2

)
. Indeed, in [26] it is proven that, for a smooth function d, such that

|∇d| = 1, then
1

ηε
aε (t, x, e)→ k[d](x)

where k is a fractional operator and aε is defined in (5.9). This suggests that the front
moves according the following fractional mean-curvature equation:

∂td(t, x) = γk[d(t, ·)](x)|Dd|

with µ and k depending on the gradient variable in the anisotropic case. The proof of
Theorem 5.1 relies on the construction of barriers, i.e., sub and supersolution of (5.1),
which are suitable correction of the Ansatz. In the case s < 1

2
, the authors are not able

to construct a barrier far from the front. Indeed, in the case s < 1
2

the contributions from
far from the front are not negligible. This is somehow expected, see for instance [33].

A further interesting problem in this direction, with important applications in the
theory of crystal dislocations, consists in extending the result of Section 3 to higher
dimensions, i.e., proving analogous results to those presented in Section 5 in the case of
two or more dislocation lines. To provide a concrete example, suppose that there are two
closed dislocation lines in the slip plane x1x2. This situation can be modeled by equation
(5.1), with associated initial condition

(6.1) u0ε(x) = q

(
d10(x)

ε
,Dd10(x)

)
+ q

(
d20(x)

ε
,Dd20(x)

)
,

where di0 is the signed distance function to the boundary of a smooth set Ωi
0, i = 1, 2,

Ω1
0 ⊂ Ω2

0 and the two sets are at positive distance one from each other. Here q is solution
of (5.3). Existence of such layer solutions needs to be proven as well. In the isotropic
case, solutions of (5.3) are given by q(x) = u(x − x0), for any x0 ∈ R, where u is the
unique solution of (2.6).

The solution uε of (5.1)-(6.1), will convergence as ε→ 0 to the following stable equilibria
of W ′: 0,1 and 2. Let Ω1(t) and Ω2(t) be the resulting interphases at time t starting from
the initial configurations Ω1

0 and Ω2
0 respectively. We expect a double behavior for the

motion of these fronts. Indeed, we think that in the case s > 1
2
, the fronts move by local

mean curvature and the interaction between the two fronts is negligible at a first level of
approximation, i.e., the mean curvature motion is predominant. On the other hand, when
s < 1

2
, we expect that the interaction is not negligible anymore and that the equations

for the motion of the fronts involve a fractional mean curvature operator and a local term
taking into account the interaction of the fronts.
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If the expected results hold true, this would suggest to investigate a higher order of
asymptotics for the solution of (5.1)-(6.1) to gather how dislocation lines interact, having
in mind that the case s = 1

2
has a physical interest in view of its applications to the theory

of crystal dislocations.
Finally, one could also consider dislocation lines with different orientations. In this

case, the initial datum, with two of them would be

u0ε(x) = q

(
d10(x)

ε
,Dd10(x)

)
+ q

(
−d

2
0(x)

ε
,−Dd20(x)

)
.

In this situation, we expect some sort of collision in finite time.
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