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Abstract. We consider a semi-linear integro-differential equation in dimension one
associated to the half Laplacian whose solution represents the atom dislocation in a
crystal. The equation comprises the evolutive version of the classical Peierls-Nabarro
model. We show that for a large number of dislocations, the solution, properly rescaled,
converges to the solution of a fully nonlinear integro-differential equation which is a
model for the macroscopic crystal plasticity with density of dislocations. This leads to
the formal derivation of the 1-D Groma-Balogh equations [14], a popular model describing
the evolution of the density of positive and negative oriented parallel straight dislocation
lines. This paper completes the work of [28]. The main novelty here is that we allow
dislocations to have different orientation and so we have to deal with collisions of them.

1. Introduction

The goal of this paper is to complete the study started by the authors in [28] of the be-
havior as ε→ 0 of the solution uε of the following evolutionary partial-integro-differential
equation

(1.1)

δ∂tuε = I1[uε]−
1

δ
W ′
(
uε

ε

)
in (0,+∞)× R

uε(0, ·) = u0(·) on R
where ε, δ > 0 are small scale parameters and δ = δε → 0 as ε → 0, W is a multi-
well periodic potential and we denote by I1 the so-called fractional Laplacian of order 1,
−(−∆)

1
2 , defined by

I1[v](x) =
1

π
PV

∫
R

v(y)− v(x)

(y − x)2
dy,

where PV stands for principal value. We refer to [34] or [7] for a basic introduction to the
fractional Laplace operator.

Equation (1.1) arises in the Peierls-Nabarro model to describe at microscopic scale
the motion of dislocation lines in crystals. Dislocations are line defects in crystalline
materials whose motion is responsible of the plastic behavior of metals. Dislocations can
be described at several scales by different models:

a) atomic scale (Frenkel-Kontorova model),
b) microscopic scale (Peierls-Nabarro model),
c) mesoscopic scale (Discrete dislocation dynamics),
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d) macroscopic scale (Elasto-visco-plasticity with density of dislocations).

We refer the reader to the book [15] for a tour in the theory of dislocations. The 1-D
Peierls-Nabarro model describes the microscopic effect of an ensemble of straight edge
dislocation lines all lying in the same plane. After a cross section, dislocation lines can
be identified by points on a line. Every dislocation is associated to either a positive
or a negative orientation, depending on the direction of the Burgers’ vector (a fixed
vector associated to the dislocation). Equation (1.1) with ε = 1, which is obtained
after a parabolic rescaling of the original model, has been investigated in a series of
papers [13, 6, 5, 29, 31, 32]. The solution here is a phase transition function which
represents the atom displacement, in terms of δ, which in turn represents the size of
the crystal scale. Starting from an initial configuration where the transitions occurs at
some given points, for small δ, the displacement function approaches a piecewise constant
function. The plateaus of this asymptotic limit correspond to the periodic sites induced
by the crystalline structure, but its jump points evolve in time, according to a singular
potential. Roughly speaking, one can imagine that the discontinuity points of this limit
displacement function behave like a “particle” system (though no “material” particle is
really involved), driven by a system of ordinary differential equations which describe the
position of the jump points y1(t), . . . , yN(t). The system corresponds to the dynamics of
discrete dislocations and the convergence result is a passage from (b) to (c). The physical
properties of the singular potential of this ODE system depend on the orientation of the
displacement function at the jump points. Namely, if the displacement function has the
same spatial monotonicity at yi and yi+1 (i.e., yi and yi+1 have the same orientation), then
the potential induces a repulsion between the particles yi and yi+1. Conversely, when the
displacement function has opposite spatial monotonicity at yi and yi+1 (i.e., yi and yi+1

have opposite orientation), then the potential becomes attractive, and the two particles
may collide in a finite time. We will give more details in Section 1.1. Collisions create a
problem in the analysis as the dynamical system that governs the motion of the dislocation
particles ceases to be well-defined at the collision time. The study of the asymptotics of
the displacement function after collision time permits to understand how the dynamical
law of the interphase points can be continued/extended after collisions, see [32].

Different space/time scales of the original Peierls-Nabarro model also produce homog-
enization results, whose effective Hamiltonian depends on the scaling properties of the
operator see [21, 30]. The model can also be linked to the classical model at the atomic
scale which was introduced by Frenkel and Kontorova (see [8]) (from (a) to (b)).

We refer to [3, 9, 10, 11, 12, 18, 19, 22, 33] for further related results.

In [28] the authors considered for the first time the case in which the number of dis-
locations N goes to ∞. We introduced a second parameter ε such that N = Nε → ∞
as ε → 0. A parabolic rescaling in δ and hyperbolic rescaling in ε of the original model
leads to (1.1). In [28] we only considered the case when the dislocation points have all
the same orientation, which in the model corresponds to assuming the initial condition
u0 to be monotonic. In the present paper, we remove the monotonicity assumption on u0,
allowing dislocations to have different orientation. More precisely, on u0 we assume

(1.2)


u0 ∈ C1,1(R),

lim
x→−∞

u0(x) = 0,

lim
x→+∞

u0(x) = l, for some l ∈ R.
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For fixed ε, the dislocation points at initial time are approximated by the points in the
level sets {u0 = εi}, i ∈ Z, while their orientations are determined by the monotonicity
of u0 at the points. The limits in (1.2) guarantee that the dislocation points remain in a
compact set for fixed ε. The first limit is just a normalization, 0 could be replace by any
real number.

On the potential W we assume

(1.3)



W ∈ C2,β(R) for some 0 < β < 1

W (u+ 1) = W (u) for any u ∈ R
W = 0 on Z
W > 0 on R \ Z
W ′′(0) > 0.

Our goal in this paper is to understand the large scale limit of the Peierls-Nabarro
model for a large number of parallel straight edge dislocation lines lying in the same slip
plane, with possibly different orientation, moving with self-interactions. We perform a
direct passage from the model (b) to the model (d) and show that at macroscopic scale
the density of dislocations is governed by the following evolution law:

(1.4)

{
∂tu = c0|∂xu| I1[u] in (0,+∞)× R
u(0, ·) = u0 on R

where c0 > 0 is defined in the forthcoming (1.14). Our main result is the following:

Theorem 1.1. Assume (1.2) and (1.3). Let uε be the solution of (1.1). There exists a
number Aε > 0 depending on ε and u0 such that if δ → 0 and δAε → 0 as ε→ 0, then uε

converges locally uniformly in (0,+∞)×R to the viscosity solution u of (1.4), as ε→ 0.

Remark 1.2. The quantity Aε in Theorem 1.1, will be made explicit later on, see Section
2.2. The condition δAε → 0 as ε → 0 is automatically satisfied by any δ that converges
to 0 with ε, if we have some control on the number of dislocation points at time 0 with
respect to ε. This is the case, for example, when u0 is either monotone or goes to 0 and l,
respectively as x→ −∞ and x→ +∞, faster or equal than respectively c/x and l + c/x,
for some c > 0, see Section 2.2. The latter condition is natural in this setting, see (2.16).

To prove Theorem 1.1, the idea is to approximate the dislocation particles with points
xi(t) where the limit function u attains the value εi at time t, i ∈ Z. We then show that

biẋi = − ∂ut(t, xi(t))

|∂xu(t, xi(t))|
' −c0I1[u(t, ·)](xi(t)),

with bi = sgn(∂xu(t, xi(t))), provided ∂xu(t, xi(t)) 6= 0.
One of the main difficulties in the proof of Theorem 1.1 consists in proving that ∂tu = 0

(in the viscosity sense) at points where ∂xu vanishes. This result is also the main novelty
with respect to our previous work [28]. Indeed in the monotonic case we could prove, by
using an approximation argument, that if u0, and thus the limit function u, is monotone,
it is enough to test equation (1.4) with test functions for u with non vanishing derivative
in x. That argument cannot be applied in the present setting and we have to deal with
the case of test functions with vanishing derivatives. Roughly speaking, points x where
∂xu(t, x) = 0 corresponds to the locations where collisions occur at time t. The proof
here is based on a new analysis of how the datum in (1.1) is transported along the
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characteristics xi(t) around a collision point. The strategy and the heuristic of the proofs
are explained in Section 3.

Differentiating equation (1.4) formally yields the following system of equations for the
positive and negative part of f = ∂xu,

∂tf
+ = c0∂x(f

+H(f+ − f−)),

∂tf
− = −c0∂x(f−H(f+ − f−)),

(1.5)

with H the Hilbert transform. Equations (1.5) are the 1-D version of the 2-D Groma-
Balogh equations [14], a popular model describing the evolution of the density of positive
and negative oriented parallel straight dislocation lines. This is the first time such equa-
tions are formally derived from the microscopic Peierls-Nabarro model.

As a by-product of the proof of Theorem 1.1 we also obtain the following asymptotic
behavior of the limit function.

Proposition 1.3. The limit function u satisfies

(1.6) lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = l,

uniformly in t ∈ [0, T ], for any T > 0. Moreover, for all (t, x) ∈ (0,+∞)× R

(1.7) inf u0 6 u(t, x) 6 supu0.

Remark 1.4. The limits (1.6) can be interpreted as the property of the dislocations par-
ticles to remain in a compact set in the interval [0, T ]. Property (1.7), which is an easy
consequence of the comparison principle, says that, while dislocations may annihilate, no
dislocations are created.

1.1. The Peierls-Nabarro model. The Peierls-Nabarro model [24, 25] is a phase field
model for dislocation dynamics incorporating atomic features into continuum framework.
In a phase field approach, the dislocations are represented by transition of a continuous
field. We refer to [26] for a survey of the Peierls-Nabarro model. See also Section 1.1
in [28] for some basic physical derivation. After a section of the three-dimensional crystal
with a plane, a straight dislocation line can be identified with a point on a line. A positive
oriented dislocation located at 0 is described by the transition from 0 to 1 of the phase
transition function, solution to

(1.8)


I1[φ] = W ′(φ) in R
φ′ > 0 in R

lim
z→−∞

φ(z) = 0, lim
z→+∞

φ(z) = 1, φ(0) =
1

2
,

while a negative oriented dislocation located at 0 is described by the transition from 0 to
-1 of the solution of

(1.9)


I1[φ] = W ′(φ) in R
φ′ < 0 in R

lim
z→−∞

φ(z) = 0, lim
z→+∞

φ(z) = −1, φ(0) =
1

2
.
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Under assumption (1.3), existence of a unique solution of (1.8) has been proven in [2, 27].
Define

(1.10) φ(z, b) :=

{
φ(z) for b = 1

φ(−z)− 1 for b = −1.

Notice that, by the periodicity of W , if φ is the solution of (1.8) then φ(x,−1) is the
solution of (1.9).

In the face cubic structured (FCC) observed in many metals and alloys, dislocations
move at low temperature on the slip plane. The dynamics for a collection of straight edge
dislocations lines, all contained in a single slip plane, moving with self-interactions (no
exterior forces) is then described by the evolutive version of the Peierls-Nabarro model
(see for instance [23] and [4]):

(1.11) ∂tu = I1[u(t, ·)]−W ′ (u) in (0,+∞)× R,
with initial condition

(1.12) u(0, x) =
N∑
i=1

φ

(
x− y0i

δ
, bi

)
,

where φ is the solution of (1.8), N is the number of dislocations, y0i are the initial locations
of the dislocation points and neighboring dislocations are at distance at microscopic scale
of order 1/δ, that is

0 6 y0i+1 − y0i ∼ 1.

The number bi ∈ {−1, 1} identifies the orientation of the dislocation: when bi = 1 the
dislocation is positive oriented, when bi = −1 it is instead negative oriented.

Let u be the solution of (1.11) with initial condition (1.12). Then, the rescaled function

vδ(t, x) = u

(
t

δ2
,
x

δ

)
,

which is solution to the integro-differential equation in (1.1) with ε = 1 converges as δ → 0

to a sum of Heaviside functions of the form
∑N

i=1H(bi(x − yi(t))), where the interphase
(jump) points yi(t), i = 1, . . . , N evolve in time driven by the following system of ODE:

(1.13)


ẏi = c0

∑
j 6=i

bibj
yi − yj

in (0, Tc)

yi(0) = y0i ,

where c0 is defined by

(1.14) c0 =

∫
R

(φ′)2

−1 ,
see [13, 32]. Here 0 < Tc 6 +∞ is the first time a collision between opposite oriented inter-
phase points occurs. Indeed, if yi and yi+1 have opposite orientation, that is bibi+1 = −1,
the equation for ẏi contains the term −1/(yi−yi+1) > 0 and the equation for ẏi+1 contains
the term −1/(yi+1 − yi) < 0. Since yi(0) < yi+1(0), the two points may collide in finite
time. Points with same orientation repel each other, thus never collide. System (1.13)
can be extended after collision by removing the particles that annihilate at collision, see
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[32, 19]. In the physical model, the ODE system (1.13) represents the discrete dynamics
of N dislocation points with possibly different orientation.

In the present we want to identify at large (macroscopic) scale the evolution model
for the dynamics of a density of dislocations. We introduce a further parameter ε and
consider a number of dislocations N = Nε such that Nε → +∞ as ε → 0 and we send
both δ and ε to 0 together. We do not specify how Nε goes to 0 with ε but we only require
that

ε2Nεδ → 0

as ε→ 0. We consider the following rescaling

uε(t, x) = εu

(
t

εδ2
,
x

εδ

)
,

with u the solution of (1.11)-(1.12). Then we see that uε is solution of (1.1) with initial
datum

(1.15) uε(0, x) =
Nε∑
i=1

εφ

(
x− x0i
εδ

, bi

)
,

with x0i = εy0i .
In general, we consider an initial datum u0 satisfying (1.2). One can actually prove (see

Proposition 4.10) that any function satisfying (1.2), can be approximated by a function
of the form (1.15).

1.2. Organization of the paper. The paper is organized as follows. In Section 2 we
introduce notations and recall some general auxiliary results that will be used in the paper.
The strategy and the heuristic of the proof of Theorem 1.1 are presented in Section 3. In
Section 4 we prove a discrete approximation formula of the fractional Laplacian I1 which
extends to non monotonic functions the one given in [28]. In Section 5 we construct local
in time and global in space supersolutions of (1.1). Sections 6 and 7 are devoted to the
proof of our main result, Theorem 1.1. Proposition 1.3 is proven in Section 8. Finally,
the proofs of some auxiliary lemmas are given in Section 9.

2. Definitions, Notations and preliminary results

2.1. Definitions and Notations. Let v be a function satisfying the following assump-
tions

(2.1)


v ∈ C1,1(R),

v not constant,

lim
x→−∞

v(x) = 0,

lim
x→+∞

v(x) = l, for some l ∈ R.

For a fixed ε ∈ (0, 1), we define

Λi := {x | iε < v(x) < ε(i+ 1)}, i = sε, . . . , Sε,

where sε :=
⌈
infR v
ε

⌉
and Sε :=

⌊ supR v
ε

⌋
.

Let us denote by Λ̃i the subset of Λi obtained by removing the connected components in
which the oscillation of v is smaller than ε. By the limits in (2.1), there exists a compact
set [−Kε, Kε] such that Λ̃i ⊆ [−Kε, Kε] for all i = sε, . . . , Sε. Moreover, any connected
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component of Λ̃i has measure bigger or equal than ε/L, where L is the Lipschitz constant
of v. Indeed, if A is any connected component of Λ̃i, then there exists a point x0 ∈ A such
that v(x0) = ε(i+ 1/2) and by the regularity of v, the interval (x0− ε/(2L), x0 + ε/(2L))
is contained in A. We infer that the number of connected components of Λ̃i is finite. In
particular, the set

⋃
i ∂Λ̃i has a finite number of points, that is

(2.2)
Sε⋃
i=sε

∂Λ̃i = {x1, x2, ..., xNε},

for some positive integer Nε depending on ε, where the points xi are ordered such that
x1 < x2 < ... < xNε . For each i ∈ {1, 2, ..., Nε}, define v(x0) = 0 and

(2.3) bi =
v(xi)− v(xi−1)

ε
∈ {−1, 1},

which also gives the following expression for v(xi)

(2.4) v(xi) = v(xi−1) + bi =
i∑

j=1

bjε.

We will sometimes refer to the level set points defined in (2.2) as particles. By definition,
in any interval [xi, xi+1], the oscillation of v is equal to ε, thus,

(2.5) |v(x)− v(y)| 6 ε, for all x, y ∈ [xi, xi+1].

For any x ∈ (x1, xNε) we will call the closest particle to x the points xi0 such that
x ∈ (xi0−1, xi0 ] and |x− xi0| 6 |x− xi| for all i = 1, . . . , Nε. If x 6 x1 the closest particle
to x is x1, while for x > xNε the closest particle is xNε .

Given integers M and N such that 1 6 M 6 N 6 Nε, we denote the number of
particles with bi = 1 and particles with bi = −1 in [xM , xN ] by n+

M,N and n−M,N respectively.
Precisely,

n+
M,N := |{i ∈ {M, ..., N} | bi = 1}|,

n−M,N := |{i ∈ {M, ..., N} | bi = −1}|.

Also, we define

(2.6) nM,N := n+
M,N − n

−
M,N .

When M = 1 and N = Nε, we denote

N+
ε := n+

1,Nε
, N−ε := n−1,Nε .

Note that Nε = N+
ε +N−ε .

Remark 2.1. Using (2.4), (2.6) can also be expressed by

(2.7) εnM,N = εn+
M,N − εn

−
M,N = ε

N∑
i=M
bi=1

bi + ε
N∑
i=M
bi=−1

bi =
N∑
i=M

biε = v(xN)− v(xM) + bMε.

In particular, for M = 1, we have v(x1) = b1ε, which yields

εn1,N = v(xN).
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Similarly to Definition (1.10), for the Heaviside function H, we define for any z ∈ R
and b ∈ {−1, 1},

(2.8) H(z, b) := bH(z).

To construct sub and supersolution of (1.1) we will often make use of the following
ODE’s system

(2.9)

{
ẋi(t) = −c0biL,
xi(0) = x0i ,

where x01, x
0
2, ..., x

0
Nε

are the level set points of the initial condition, L ∈ R and c0 is given
by (1.14).

We denote by Br(x) the ball of radius r centered at x. The cylinder (t−τ, t+τ)×Br(x)
is denoted by Qτ,r(t, x). bxc and dxe denote respectively the floor and the ceil integer
parts of a real number x.

For r > 0, we denote

(2.10) I1,r1 [v](x) =
1

π
PV

∫
|y−x|6r

v(y)− v(x)

(y − x)2
dy,

and

(2.11) I2,r1 [v](x) =
1

π

∫
|y−x|>r

v(y)− v(x)

(y − x)2
dy.

Then we can write

I1[v](x) = I1,r1 [v](x) + I2,r1 [v](x).

We denote by USCb((0,+∞) × R) (resp., LSCb((0,+∞) × R)) the set of upper (resp.,
lower) bounded semicontinuous functions on (0,+∞)×R which are bounded on (0, T )×R
for any T > 0 and we set Cb((0,+∞)×R) := USCb((0,+∞)×R)∩LSCb((0,+∞)×R).
We denote by C2

b ((0,+∞)×R) the subset of functions of Cb((0,+∞)×R) with continuous
second derivatives. Finally, C1,1(R) is the set of functions with bounded C1,1 norm over R.

Given a sequence {uε} we denote

lim sup
ε→0

∗uε(x) = sup
{

lim sup
ε→0

uε(xε) |xε → x
}
,

and

lim inf
ε→0 ∗

uε(x) = inf
{

lim inf
ε→0

uε(xε) |xε → x
}
.

Given a quantity E = E(x), we write E = O(A) is there exists a constant C > 0 such
that, for all x,

|E| 6 CA.

We write E = oε(1) if

lim
ε→0

E = 0,

uniformly in x.
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2.2. Definition of Aε. Since u0 satisfies (1.2), it is easy to see that there exist C1,1

functions v1 and w1 such that

(2.12)

{
v1 6 u0, v1(−∞) = 0, v1 is non-increasing

w1 6 u0, w1(+∞) = l, w1 is non-decreasing,

and there exist C1,1 functions v2 and w2 such that

(2.13)

{
v2 > u0, v2(−∞) = 0, v2 is non-decreasing

w2 > u0, w2(+∞) = l, w2 is non-increasing.

Let Kε > 0 be such that for i = 1, 2,

|vi(x)| < ε

4
if x < −Kε and |wi(x)− l| < ε

4
if x > Kε.

Then, all the points in the ε level sets of u0 defined as in (2.2) must belong to the compact
set [−Kε, Kε] and by the forthcoming formula (4.1), if N0

ε is the number of such points,
then N0

ε 6 CKε/ε. Set

Aε := εKε.

Then we choose δ = oε(1) such that

(2.14) δAε = oε(1).

The condition guarantees that

(2.15) ε2N0
ε δ = oε(1).

Notice that if u0 is monotonic then N0
ε 6 (supu0 − inf u0)/ε, therefore (2.15) is always

satisfied and no condition on how δ goes to 0 as ε→ 0 is required. It is easy to see that
(2.14) holds true if u0 satisfies the following asymptotic estimate

|u0(x)− lH(x)| 6 C

x
if |x| > 1,

for some C > 0, with H the Heaviside function.

2.3. Short and long range interaction. We start by recalling a basic fact about the
operator I1. Given v ∈ C1,1(R) and r > 0 we can split I1[v] into the short and long range
interaction as follows,

I1[v](x) = I1,r1 [v](x) + I2,r1 [v](x),

where I1,r1 [v](x), I2,r1 [v](x) are defined respectively by (2.10) and (2.11). The short range
interaction can be rewritten as

I1,r1 [v](x) =
1

2π

∫
|y|<r

v(x+ y) + v(x− y)− 2v(x)

y2
dy,

Therefore,

|I1,r1 [v](x)| 6 r

π
‖v‖C1,1(R).

The long range interaction can be bounded as follows

|I2,r1 [v](x)| 6 4

rπ
‖v‖∞.
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2.4. The functions φ and ψ. In what follows we denote by H(x) the Heaviside function.
Let α := W ′′(0) > 0.

Lemma 2.2. Assume that (1.3) holds, then there exists a unique solution φ of (1.8).
Furthermore φ ∈ C2,β(R) and there exist constants K0, K1 > 0 such that

(2.16)

∣∣∣∣φ(z)−H(z) +
1

απz

∣∣∣∣ 6 K1

z2
, for |z| > 1,

and for any z ∈ R

(2.17) 0 <
K0

1 + z2
6 φ′(z) 6

K1

1 + z2
.

Proof. The existence of a unique solution of (1.8) and estimate (2.17) are proven in [2, 27].
Estimate (2.2) is proven in [13]. �

Let c0 be defined as in (1.14). Let us introduce the function ψ to be the solution of

(2.18)

{
I1[ψ] = W ′′(φ)ψ + L

α
(W ′′(φ)−W ′′(0)) + c0Lφ

′ in R
limz→±∞ ψ(z) = 0.

For later purposes, we recall the following decay estimate on the solution of (2.18):

Lemma 2.3. Assume that (1.3) holds, then there exists a unique solution ψ to (2.18).
Furthermore ψ ∈ C1,β(R) and for any L ∈ R there exist constants K2 and K3, with
K3 > 0, depending on L such that

(2.19)

∣∣∣∣ψ(z)− K2

z

∣∣∣∣ 6 K3

z2
, for |z| > 1,

and for any z ∈ R

(2.20) − K3

1 + z2
6 ψ′(z) 6

K3

1 + z2
.

Proof. The existence of a unique solution of (2.18) is proven in [13]. Estimates (2.19) and
(2.20) are shown in [21]. �

The results of Lemmas 2.2 and 2.3 have been generalized in [1, 6, 5, 27, 30] to the case
when the fractional operator is −(−∆)s for any s ∈ (0, 1).

For ψ solution of (2.18) and b ∈ {−1, 1}, z ∈ R, we define

(2.21) ψ(z, b) := ψ(bz)

2.5. Definition of viscosity solution. We first recall the definition of viscosity solution
for a general first order non-local equation

(2.22) ∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞)× Ω

where Ω is an open subset of R and F (t, x, u, p, L) is continuous and non-decreasing in L.

Definition 2.1. A function u ∈ USCb((0,+∞)× R) (resp., u ∈ LSCb((0,+∞)× R)) is
a viscosity subsolution (resp., supersolution) of (2.22) if for any (t0, x0) ∈ (0,+∞) × Ω,
and any test function ϕ ∈ C2

b ((0,+∞) × R) such that u − ϕ attains a global maximum
(resp., minimum) at the point (t0, x0), then

∂tϕ(t0, x0)− F (t0, x0, u(t0, x0), ∂xϕ(t0, x0), I1[ϕ(t0, ·)](x0)) 6 0

(resp., > 0).
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A function u ∈ Cb((0,+∞) × R) is a viscosity solution of (2.23) if it is a viscosity sub
and supersolution of (2.22).

Remark 2.4. It is classical that the maximum (resp., the minimum) in Definition 2.1
can be assumed to be strict and that

ϕ(t0, x0) = u(t0, x0).

This will be used later.

Next, let us consider the initial value problem

(2.23)

{
∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞)× R
u(0, x) = u0(x) on R,

where u0 is a continuous function.

Definition 2.2. A function u ∈ USCb((0,+∞)×R) (resp., u ∈ LSCb((0,+∞)×R)) is a
viscosity subsolution (resp., supersolution) of the initial value problem (2.23) if u(0, x) 6
(u0)(x) (resp., u(0, x) > (u0)(x)) and u is viscosity subsolution (resp., supersolution) of
the equation

∂tu = F (t, x, u, ∂xu, I1[u]) in (0,+∞)× R.
A function u ∈ Cb((0,+∞) × R) is a viscosity solution of (2.23) if it is a viscosity sub
and supersolution of (2.23).

It is a classical result that smooth solutions are also viscosity solutions.

Proposition 2.5. If u ∈ C1((0,+∞);C1,β
loc (Ω) ∩ L∞(R)) for some 0 < β 6 1, and u

satisfies pointwise

∂tu− F (t, x, u, ∂xu, I1[u]) 6 0 (resp. > 0) in (0,+∞)× Ω,

then u is a viscosity subsolution (resp., supersolution) of (2.22).

2.6. Comparison principle and existence results. In this subsection, we successively
give comparison principles and existence results for (1.1) and (1.4). The following com-
parison theorem is shown in [17] for more general parabolic integro-PDEs.

Proposition 2.6 (Comparison Principle for (1.1)). Consider u ∈ USCb((0,+∞) × R)
subsolution and v ∈ LSCb((0,+∞)×R) supersolution of (1.1), then u 6 v on (0,+∞)×R.

Following [17] it can also be proven the comparison principle for (1.1) in bounded
domains. Since we deal with a non-local equation, we need to compare the sub and the
supersolution everywhere outside the domain.

Proposition 2.7 (Comparison Principle on bounded domains for (1.1)). Let Ω be a
bounded domain of (0,+∞)×R and let u ∈ USCb((0,+∞)×R) and v ∈ LSCb((0,+∞)×
R) be respectively a sub and a supersolution of

δ∂tu = I1[u(t, ·)]− 1

δ
W ′
(u
ε

)
in Ω.

If u 6 v outside Ω, then u 6 v in Ω.

Proposition 2.8 (Existence for (1.1)). For ε, δ > 0 there exists uε ∈ Cb([0,+∞) × R)
(unique) viscosity solution of (1.1).
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Proof. We can construct a solution by Perron’s method if we construct sub and superso-
lutions of (1.1) which are equal to u0(x) at t = 0. Since u0 ∈ C1,1(R), the two functions
u±(t, x) := u0(x)± C

δ2
t are respectively a super and a subsolution of (1.1), if

C >
4δ

π
‖u0‖C1,1(R) + ‖W ′‖∞.

Moreover u+(0, x) = u−(0, x) = u0(x). 2

We next recall the comparison and the existence results for (1.4), see e.g. [16], Propo-
sition 3.

Proposition 2.9. If u ∈ USCb([0,+∞)×R) and v ∈ LSCb([0,+∞)×R) are respectively a
sub and a supersolution of (1.4), then u 6 v on (0,+∞)×R. Moreover, under assumption
(1.2), there exists a (unique) viscosity solution of (1.4).

3. Strategy and heuristic proofs

In this section we explain the steps that we will follow to prove Theorem 1.1 and the
heuristics of the main proofs.

3.1. Approximation of I1. The first result is a discrete approximation formula for the
fractional Laplace I1. Let v be any function satisfying (2.1). Let xi and bi ∈ {−1, 1},
i = 1, . . . , Nε, be defined as in (2.2) and (2.3) respectively. Then, we show (see Proposition
4.4 and Proposition 4.6) that for any fixed i0 ∈ {1, . . . , Nε},

(3.1) I1[v](xi0) '
1

π

∑
i 6=i0

biε

xi − xi0
,

and for any x,

I1[v](x) ' 1

π

∑
|xi−x|>r

biε

xi − x
,

for some r = oε(1), where the error goes to 0 as ε → 0 uniformly over R. On the other
hand, the sum ∑

i 6=i0
|xi−x|6r

biε

xi − x
,

where xi0 is the closest particle to x may not be zero but depends on the distance of
x from xi0 (see Lemma 4.5). For the proof of these results we follow the proof of the
analogous results given in [28] in the case v is monotone non-decreasing, i.e. bi = 1 for all
i. We refer to Section 2.1 there for the heuristic of (3.1) in the monotone case.

3.2. Approximation of v. Let φ(x, bi) be defined as in (1.10). Then, we show (see
Proposition 4.10) that any function v satisfying (2.1) can be approximated in L∞(R) as
follows,

(3.2) v(x) '
Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
,

with xi and bi ∈ {−1, 1}, i = 1, . . . , Nε, defined as in (2.2) and (2.3) respectively. We refer
to Section 2.2 in [28] for the heuristic proof of (3.2) in the case v monotone non-decreasing.
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3.3. Heuristic of the proof of Theorem 1.1. Let u be the limit solution (that here
we suppose to exist and be smooth). Fix a point (t0, x0) ∈ (0,+∞) × R. We need to
distinguish two cases: ∂xu(t0, x0) 6= 0 and ∂xu(t0, x0) = 0.

Case 1: ∂xu(t0, x0) 6= 0.
We are going to give an ansatz for uε in a small box QR of size R centered at (t0, x0).

For small R, all the derivatives of u can be considered constant in QR:

∂tu(t, x) ' ∂tu(t0, x0), ∂xu(t, x) ' ∂xu(t0, x0)

and
I1[u(t, ·)](x) ' I1[u(t0, ·)](x0) =: L0.

For t close to t0, we define the points xi(t) as in (2.2) and for v = u(t, ·). Since u is
monotone in QR, the bi of the particles inside that box, defined as in (2.3), have all the
same value. Moreover, for those points, by differentiating in t the equation

(3.3) u(t, xi(t)) = const.,

we get
∂tu(t, xi(t)) + ∂xu(t, xi(t))ẋi(t) = 0,

from which

(3.4) ẋi(t) = − ∂tu(t, xi(t))

∂xu(t, xi(t))
' − ∂tu(t0, x0)

∂xu(t0, x0)
.

Notice that since particles in the box have the same speed, they never collide there. Next
we consider as ansatz for uε the approximation of u given by (3.2) plus a small correction:

Φε(t, x) :=
Nε∑
i=1

ε

(
φ

(
x− xi(t)

εδ
, bi

)
+ δψ

(
x− xi(t)

εδ
, bi

))
,

where φ(·, bi) is defined as in (1.10) and ψ(·, bi) as in (2.21), with ψ the solution of (2.18)
with L = L0. For a detailed heuristic motivation of this correction, see Section 3.1 of [13].
By (3.2), Φε(t, x) → u(t, x) as ε → 0. Fix (t, x) ∈ QR and let xi0(t) be the closest point
among the xi(t)’s to x and zi(t) = (x− xi(t))/(εδ). Plugging into (1.1), we get (see proof
of (6.38) in Section 6)

0 = δ∂tΦ
ε(t, x)− I1[Φε(t, ·)](x) +

1

δ
W ′
(

Φε(t, x)

ε

)

' −φ′(zi0)(bi0ẋi0(t) + c0L0) + (W ′′(φ(zi0))−W ′′(0))

1

δ

∑
i 6=i0

φ̃(zi, bi)−
L0

α


where φ̃(·, bi) = φ(·, bi)−H(·, bi), with H(·, bi) defined as in (2.8). Suppose for simplicity
that x = xi0(t), then by (2.16) and (3.1)

1

δ

∑
i 6=i0

φ̃(zi, bi)−
L0

α
' 1

απ

∑
i 6=i0

biε

xi − xi0
− L0

α
' 0.

Since φ′ > 0, we must have
ẋi0(t) ' −c0bi0L0

that is, by (3.4),

∂tu(t0, x0) ' c0bi0∂xu(t0, x0)I1[u(t0, ·)](x0) = c0|∂xu(t0, x0)|I1[u(t0, ·)](x0).
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To formalize the argument we will construct from the ansatz local in space and time sub
and supersolutions of (1.1) to compare with uε.

Notice that if we define

yi(τ) :=
xi(ετ)

ε
then the yi’s solve

ẏi(τ) = ẋi(ετ) ' −c0biL0 '
c0
π

∑
j 6=i

bibjε

xi − xj
=
c0
π

∑
j 6=i

bibj
yi − yj

,

which is the discrete dislocations dynamics given in (1.13).

Case 2: ∂xu(t0, x0) = 0.
When ∂xu(t0, x0) = 0, we cannot obtain formula (3.4). However the ODE system (1.13)

and the approximation formula (3.1) suggests that, at least locally,

uε(t, x) ∼
Nε∑
i=1

εφ

(
x− xi(t)

εδ
, bi

)
,

with xi(t) solution of
ẋi(t) ' −c0bi0I1[u(t0, ·)](xi(t)),

and xi(t0) = x0i , with x0i the level set points of the function u(t0, ·). Therefore, we proceed
as follows. Assume that in a box Qρ around (t0, x0) u has the form

(3.5) u(t, x) = a(x− x0)2 + g(t)

for some a > 0 and g smooth. Notice that level set points of u in Qρ which are smaller
than x0 are associated to bi = −1, and those bigger than x0 are associated to bi = 1. Fix
any 0 < σ << ρ independent of ε. We construct a smooth approximation, uσ, of u which
is constant in x for |x− x0| 6 σ. Precisely, uσ is such that

(3.6)



u 6 uσ

uσ 6 u+ Cσ2 if |x− x0| 6 σ

uσ is constant in x if |x− x0| 6 σ

uσ is non-increasing in x if x ∈ (−∞, x0)
uσ is non-decreasing in x if x ∈ (x0,+∞).

Next, we set

c :=
1

4c0L
,

with L > 0 to be determined. We then define x0i and bi, i = 1, . . . , Nε, as in (2.2) and
(2.3) for the function uσ(t0 − cσ, ·). By (3.2), for all x ∈ R,

(3.7) uσ(t0 − cσ, x) =
Nε∑
i=1

εφ

(
x− x0i
εδ

, bi

)
+ εMε + oε(1),

where the constant Mε := duσ(t0−cσ,−∞)/εe is a normalization so that uσ(t0−cσ,−∞)−
εMε = oε(1). Define the function

(3.8) Hε(t, x) :=
Nε∑
i=1

ε

(
φ

(
x− xi(t)

εδ
, bi

)
+ δψ

(
x− xi(t)

εδ
, bi

))
+ εMε + ε

⌈
oε(1)

ε

⌉
,
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with xi(t) the solution of the ODE system (2.9) with initial condition xi(t0 − cσ) = x0i ,
that is

xi(t) = x0i − bic0L[t− (t0 − cσ)].

Since
∑Nε

i=1 εδψ
(
x−xi(t)
εδ

, bi

)
= oε(1), from (3.7) we can choose oε(1) in (3.8) in such a way

u(t0 − cσ, x) 6 uσ(t0 − cσ, x) 6 Hε(t0 − cσ, x).

Notice that particles xi(t) and xi+1(t) with the same orientation (bibi+1 = 1) move in
parallel, while opposite oriented particles, (bibi+1 = −1) move each toward the other.
However, since uσ is constant in x ∈ [x0 − σ, x0 + σ] and monotonic in (−∞, x0) and
in (x0,+∞), particles with opposite orientation are at distance larger than 2σ at time
t0 − cσ. This guarantees that no collision occurs in the interval [t0 − cσ, t0 + cσ]. Then,
we are able to show that setting

L :=
C0

σ
1
2

for some C0 > 0 large enough but independent of ε and σ, Hε is supersolution of (1.1) in
[t0 − cσ, t0 + cσ]× R, and by the comparison principle,

Hε(t, x) > uε(t, x) for any (t, x) ∈ [t0 − cσ, t0 + cσ]× R.

This yields,

uε(t0, x0) 6 Hε(t0, x0)

=
Nε∑
i=1

εφ

(
x0 − xi(t0)

εδ
, bi

)
+ εMε + oε(1)

=
Nε∑
i=1

εφ

(
(x0 + bic0Lcσ)− x0i )

εδ
, bi

)
+ εMε + oε(1)

=
Nε∑
i=1

εφ

(
(x0 + c0Lcσ)− x0i )

εδ
, bi

)
+ εMε + oε(1),

where the last equality needs to be justified (see Lemma 6.1). Then, by (3.7) and the
second inequality in (3.6), we obtain

uε(t0, x0) 6
Nε∑
i=1

εφ

(
(x0 + c0Lcσ)− x0i )

εδ
, bi

)
+ εMε + oε(1)

= uσ(t0 − cσ, x0 + c0Lcσ) + oε(1)

6 u(t0 − cσ, x0 + c0Lcσ) + oε(1) + Cσ2.

Passing to the limit as ε→ 0 and recalling the definitions of c and L we get

u(t0, x0)− u
(
t0 − k0σ

3
2 , x0 + k1σ

)
6 Cσ2,

for some k0, k1 independent of σ. Dividing both sides by k0σ
3
2 , by (3.5) we finally obtain

∂tu(t0, x0) 6 0.

Similarly, one can prove that ∂ut(t0, x0) > 0.
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3.4. Viscosity sub and supersolutions. To formally prove the convergence result we
show the functions u+ := lim supε→0

∗uε and u− := lim infε→0∗u
ε, which are everywhere

finite, are respectively sub and supersolution of (1.4). Moreover, u+(0, x) 6 u0(x) 6
u−(0, x). The comparison principle then implies that u+ 6 u 6 u−. Since the reverse
inequality u− 6 u+ always holds true, we conclude that the two functions coincide with
the continuous viscosity solution of (1.4).

4. Approximation Results

In this section, we present several approximation results, which are similar to those
in [28]. In this paper, however, we consider a function v satisfying (2.1), which is not
necessarily monotonic. Since the proofs of some results are similar, they will be omitted.
Readers may consult [28] if necessary. The following lemma is proven in [28], see Lemma
4.1.

Lemma 4.1. Assume that v satisfies (2.1). Let ‖vx‖∞ 6 L, and let xi be defined as in
(2.2). Then,

(4.1) xi+1 − xi > εL−1 for all i = 1, . . . , Nε − 1.

Moreover, there exists c > 0 independent of v such that for any x ∈ R

(4.2)
Nε∑
i=1
i 6=i0

ε2

(xi − x)2
6 cL2.

In addition, if |vx| > a > 0 on an interval I, then for all xi+1, xi ∈ I, we have

(4.3) xi+1 − xi 6 εa−1.

Lemma 4.2 (Short range interaction). Assume that v satisfies (2.1) and let xi and bi be
defined as in (2.2) and (2.3). Let r = rε = oε(1) and ε/r = oε(1). For any ρ > r and
x ∈ (xMε + ρ, xNε − ρ), then

(4.4)
1

π

∑
i 6=i0

r6|xi−x|6ρ

biε

xi − x
= I1,ρ1 [v](x) +

1

π

v(x+ ρ) + v(x− ρ)− 2v(x)

ρ
+ oε(1).

Proof. Since v ∈ C1,1(R) and r = oε(1), there exists C > 0 such that

|I1,r1 [v](x)| 6 Cr = oε(1).

Therefore, we have

(4.5) I1,ρ1 [v](x) =
1

π

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx+

1

π

x+ρ∫
x+r

v(x)− v(x)

(x− x)2
dx+ oε(1).

We write the first term in (4.5) as

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx =

x−r∫
x−ρ

v(x)

(x− x)2
dx−

x−r∫
x−ρ

v(x)

(x− x)2
dx.
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and notice that we can integrate the second term in (4.5) as follows

(4.6)

x−r∫
x−ρ

v(x)

(x− x)2
dx = v(x)

x−r∫
x−ρ

1

(x− x)2
dx =

v(x)

r
− v(x)

ρ
.

Let us denote by Mρ and Mr respectively the smallest and the largest integer i such that
xi ∈ [x− ρ, x− r], that is

(4.7) xMρ−1 < x− ρ 6 xMρ 6 xMr 6 x− r < xMr+1.

Then, we have that

(4.8)

x−r∫
x−ρ

v(x)

(x− x)2
dx =

xMρ∫
x−ρ

v(x)

(x− x)2
dx+

Mr−1∑
i=Mρ

xi+1∫
xi

v(x)

(x− x)2
dx+

x−r∫
xMr

v(x)

(x− x)2
dx.

By (2.5), v(x) 6 v(x− ρ) + ε for x ∈ [x− ρ, xMρ ]. Hence, we obtain

(4.9)

xMρ∫
x−ρ

v(x)

(x− x)2
dx 6

xMρ∫
x−ρ

v(x− ρ) + ε

(x− x)2
dx =

v(x− ρ) + ε

−ρ
− v(x− ρ) + ε

xMρ − x
.

Similarly, v(x) 6 v(x− r) + ε for x ∈ [xMr , x− r], which gives us

(4.10)

x−r∫
xMr

v(x)

(x− x)2
dx 6

x−r∫
xMr

v(x− r) + ε

(x− x)2
dx =

v(x− r) + ε

xMr − x
− v(x− r) + ε

−r
.

Also, for x ∈ [xi, xi+1], we have v(x) 6 v(xi) + ε. Thus, we obtain

Mr−1∑
i=Mρ

xi+1∫
xi

v(x)

(x− x)2
dx 6

Mr−1∑
i=Mρ

xi+1∫
xi

v(xi) + ε

(x− x)2
dx

=
Mr−1∑
i=Mρ

[
v(xi) + ε

xi − x
− v(xi) + ε

xi+1 − x

]

=
Mr−1∑
i=Mρ

v(xi) + ε

xi − x
−

Mr∑
i=Mρ+1

v(xi−1) + ε

xi − x

= −v(xMr) + ε

xMr − x
+

Mr∑
i=Mρ

v(xi)− v(xi−1)

xi − x
+
v(xMρ−1) + ε

xMρ − x

=
v(xMρ−1) + ε

xMρ − x
− v(xMr) + ε

xMr − x
+

Mr∑
i=Mρ

biε

xi − x
,

(4.11)
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using v(xi) = v(xi−1) + biε in the last equality. Finally, we combine (4.6), (4.9), (4.10)
and (4.11) to get

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx 6

v(x− ρ) + ε

−ρ
− v(x− ρ) + ε

xMρ − x

+
v(x− r) + ε

xMr − x
− v(x− r) + ε

−r

+
v(xMρ−1) + ε

xMρ − x
− v(xMr) + ε

xMr − x
+

Mr∑
i=Mρ

biε

xi − x
− v(x)

r
+
v(x)

ρ
,

which simplifies to

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx 6

Mr∑
i=Mρ

biε

xi − x
+
v(x)− v(x− ρ)

ρ
− ε

ρ
+
v(x− r)− v(x)

r
+
ε

r

+
v(xMρ−1)− v(x− ρ)

xMρ − x
+
v(x− r)− v(xMr)

xMr − x
.

Note that, by (2.5) and (4.7), |v(xMρ−1) − v(x − ρ)| 6 ε, |v(x − r) − v(xMr)| 6 ε,
|xMρ − x| > r and |xMr − x| > r. Hence, the following holds:

(4.12)
v(xMρ−1)− v(x− ρ)

xMρ − x
6
ε

r
and

v(x− r)− v(xMr)

xMr − x
6
ε

r
.

Using (4.12), we therefore obtain

(4.13)

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx 6

Mr∑
i=Mρ

biε

xi − x
+
v(x)− v(x− ρ)

ρ
+
v(x− r)− v(x)

r
+

3ε

r
.

Similarly, for the second term in (4.5), one can show that

(4.14)

x+ρ∫
x+r

v(x)− v(x)

(x− x)2
dx 6

Mρ∑
i=Nr

biε

xi − x
+
v(x)− v(x+ ρ)

ρ
+
v(x+ r)− v(x)

r
+

3ε

r
.

By (4.5), (4.13) and (4.14), we conclude that

I1,ρ1 [v](x) 6
1

π

∑
i 6=i0

r6|xi−x|6ρ

biε

xi − x
+

6ε

r
+ oε(1)

+
1

π

v(x+ r)− 2v(x) + v(x− r)
r

− 1

π

v(x+ ρ)− 2v(x) + v(x− ρ)

ρ
.

(4.15)

Since v ∈ C1,1(R), there exists a constant C > 0 such that

(4.16)

∣∣∣∣v(x+ r) + v(x− r)− 2v(x)

r

∣∣∣∣ 6 Cr = oε(1).
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Therefore, using ε/r = oε(1), we finally obtain

(4.17) I1,ρ1 [v](x) 6
1

π

∑
i 6=i0

r6|xi−x|6ρ

biε

xi − x
− 1

π

v(x+ ρ)− 2v(x) + v(x− ρ)

ρ
+ oε(1).

For the lower bound, we apply the following inequalities to (4.8).

v(x) > v(xi)− ε for x ∈ [xi, xi+1], i = Mρ, ...,Mr − 1.

v(x) > v(x− ρ)− ε for x ∈ [x− ρ, xMρ]

v(x) > v(x− r)− ε for x ∈ [xM−r, x− r].

Then, we follow the same steps as above to eventually obtain

(4.18)

x−r∫
x−ρ

v(x)− v(x)

(x− x)2
dx >

Mr∑
i=Mρ

biε

xi − x
+
v(x)− v(x− ρ)

ρ
+
v(x− r)− v(x)

r
− 3ε

r
.

Similarly, one can show that

(4.19)

x+ρ∫
x+r

v(x)− v(x)

(x− x)2
dx >

Mρ∑
i=Nr

biε

xi − x
+
v(x)− v(x+ ρ)

ρ
+
v(x+ r)− v(x)

r
− 3ε

r
.

By combining (4.18) and (4.19), and using (4.16), we obtain

(4.20) I1,ρ1 [v](x) >
1

π

∑
i 6=i0

r6|xi−x|6ρ

biε

xi − x
− 1

π

v(x+ ρ)− 2v(x) + v(x− ρ)

ρ
+ oε(1),

where ε/r = oε(1). By (4.17) and (4.20), we have proven (4.4). �

Lemma 4.3 (Long range interaction). Under the assumptions of Lemma 4.2 and for r
as in the lemma, for any ρ > r and x ∈ (x1 + ρ, xNε − ρ),

(4.21)
1

π

∑
|xi−x|>ρ

biε

xi − x
= I2,ρ1 [v](x)− 1

π

v(x+ ρ) + v(x− ρ)− 2v(x)

ρ
+ oε(1).

Proof. First, we consider the following decomposition of I2,ρ1 [v](x).
(4.22)

I2,ρ1 [v](x) =

x1∫
−∞

v(x)− v(x)

(x− x)2
dx+

x−ρ∫
x1

v(x)− v(x)

(x− x)2
dx+

xNε∫
x+ρ

v(x)− v(x)

(x− x)2
dx+

+∞∫
xNε

v(x)− v(x)

(x− x)2
dx.

Define the following integrals.

T1 :=

x1∫
−∞

v(x)− v(x)

(x− x)2
dx T2 :=

x−ρ∫
x1

v(x)− v(x)

(x− x)2
dx

T3 :=

xNε∫
x+ρ

v(x)− v(x)

(x− x)2
dx T4 :=

+∞∫
xNε

v(x)− v(x)

(x− x)2
dx.
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Proceeding as in the proof of Lemma 4.2 with x − ρ, x − r, x + r, x + ρ replaced by
x1, x− ρ, x− ρ, xNε respectively in (4.15), we obtain

T2 + T3 6
∑

|xi−x|>ρ

biε

xi − x
+
v(x+ ρ)− 2v(x) + v(x− ρ)

ρ

+
v(x)− v(x1)

x− x1
− v(x)− v(xNε)

x− xNε
+

6ε

ρ
.

(4.23)

Similarly, by applying the same changing of variables to (4.20), one can show that

T2 + T3 >
∑

|xi−x|>ρ

biε

xi − x
+
v(x+ ρ)− 2v(x) + v(x− ρ)

ρ

+
v(x)− v(x1)

x− x1
− v(x)− v(xNε)

x− xNε
− 6ε

ρ
.

(4.24)

Next, using that

inf
(−∞,x1]

v 6 v(x) 6 v(x1) + ε for x ∈ (−∞, x1]

v(xNε)− ε 6 v(x) 6 sup
[xNε ,+∞)

v for x ∈ [xNε ,+∞),

we have the following estimates

(4.25) T1 =

x1∫
−∞

v(x)− v(x)

(x− x)2
dx 6

x1∫
−∞

v(x1) + ε− v(x)

(x− x)2
dx = −v(x1)− v(x)

x1 − x
− ε

x1 − x
,

(4.26) T1 =

x1∫
−∞

v(x)− v(x)

(x− x)2
dx >

x1∫
−∞

inf(−∞,x1] v − v(x)

(x− x)2
dx = −

inf(−∞,x1] v − v(x)

x1 − x
,

and

(4.27) T4 =

+∞∫
xNε

v(x)− v(x)

(x− x)2
dx 6

sup[xNε ,+∞) v − v(x)

xNε − x
,

(4.28) T4 =

+∞∫
xNε

v(x)− v(x)

(x− x)2
dx >

v(x)− v(xNε)

x− xNε
− ε

xNε − x
.

Combining (4.23), (4.25) and (4.27), we obtain

I2,ρ1 [v](x) 6
∑

|xi−x|>ρ

biε

xi − x
+
v(x+ ρ)− 2v(x) + v(x− ρ)

ρ

+
sup[xNε ,+∞) v − v(xNε)

xNε − x
+

ε

x− x1
+

6ε

ρ
.

(4.29)
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Similarly, combining (4.24), (4.26) and (4.28), we obtain

I2,ρ1 [v](x) >
∑

|xi−x|>ρ

biε

xi − x
+
v(x+ ρ)− 2v(x) + v(x− ρ)

ρ

−
v(x1)− inf(−∞,x1] v

x− x1
− ε

xNε − x
− 6ε

ρ
.

(4.30)

Since x− x1 > ρ, xNε − x > ρ, and

0 6 sup
[xNε ,+∞)

v − v(xNε) 6 ε and 0 6 v(x1)− inf
(−∞,x1]

v 6 ε,

we conclude that

sup[xNε ,+∞) v − v(xNε)

xNε − x
+

ε

x− x1
6
ε

ρ
+
ε

ρ
=

2ε

ρ

−
v(x1)− inf(−∞,x1] v

x− x1
− ε

xNε − x
> −ε

ρ
− ε

ρ
= −2ε

ρ
.

(4.31)

Finally, combining (4.29), (4.30) and (4.31) gives (4.21), which completes the proof. �

The following proposition is an immediate consequence of Lemma 4.2 and Lemma 4.3.

Proposition 4.4. Assume that v satisfies (2.1) and let xi and bi be defined as in (2.2)
and (2.3). Let r = rε = oε(1) and ε/r = oε(1). Then, for any x ∈ (xMε + r, xNε − r),

1

π

∑
|xi−x|>r

εbi
xi − x

= I1[v](x) + oε(1).

Lemma 4.5. Under the assumptions of Lemma 4.2, let x = xi0 + εγ, where xi0 is the

closest point to x. Then, there exists r = rε satisfying ε
5
8 6 r 6 cε

1
2 , with c depending on

the C1,1 norm of v, such that

(4.32)
1

π

∑
i 6=i0

|xi−x|<r

εbi
xi − x

= O(ε
1
8 ) +O(γ).

Proof. First, we want to show that

(4.33)
1

π

∑
i 6=i0

|xi−x|<r

εbi
xi − xi0

= O(ε
1
8 ).

Let K > 0 be such that ‖vxx‖L∞(R) 6 K. We consider three cases.

Case 1: |vx(xi0)| 6 12K
1
2 ε

1
2 .

By Taylor expansion and Young’s inequality, we have

ε = |bi0+1ε| = |v(xi0+1)− v(xi0)| 6 |vx(xi0)||xi0+1 − xi0|+
K

2
(xi0+1 − xi0)2

6
vx(xi0)

2

2(12)2K
+

(
122K

2
+
K

2

)
(xi0+1 − xi0)2

6
ε

2
+

122 + 1

2
K(xi0+1 − xi0)2,
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which implies

xi0+1 − xi0 > cε
1
2 ,

for some c > 0 independent of ε. Similarly, one can prove that

xi0 − xi0−1 > cε
1
2 .

Since xi0 is the closest point to x, we must have that x− xi0−1 > cε
1
2/2 and xi0+1 − x >

cε
1
2/2. Therefore, if we choose r = rε = cε

1
2/4, there is no index i 6= i0 for which

|x− xi| 6 r and thus (4.32) is trivially true.

Case 2: 12K
1
2 ε

1
2 6 |vx(xi0)| 6 ε

1
2
−τ , for some τ ∈ (0, 1/4).

If |x − xi0 | > ε
1
2/(4K

1
2 ), then we choose r = ε

1
2/(8K

1
2 ) and, as in Case 1, there is no

index i 6= i0 for which |x− xi| 6 r. Thus (4.32) holds true.

Now, assume |x− xi0| 6 ε
1
2/(4K

1
2 ) and define

(4.34) r :=
ε

1
2

2K
1
2

> 2|x− xi0|.

We claim that v is monotone in (x − r, x + r), where r is defined in (4.34). To show

this, suppose that vx(xi0) > 12K
1
2 ε

1
2 . Then, for x ∈ (x− r, x+ r),

|x− xi0| 6 |x− x|+ |x− xi0| < r +
r

2
=

3r

2
.

Now, we have that

vx(x)− vx(xi0) > −K|x− xi0| > −
3rK

2
,

which gives us

vx(x) > vx(xi0)−
3rK

2
> 12K

1
2 ε

1
2 − 3rK

2
=

45K
1
2 ε

1
2

4
> 0.

Hence, vx(x) > 0 if |x− x| < r.

One can similarly show that vx(x) < 0 if |x − x| < r when vx(xi0) 6 −12K
1
2 ε

1
2 .

Therefore, the claim is proved. Since the monotonicity is obtained, we can apply the
same proof of Lemma 4.6 in [28] to conclude that

(4.35)

∣∣∣∣∣∣∣∣
1

π

∑
i 6=i0

|xi−x|<r

ε

xi − xi0

∣∣∣∣∣∣∣∣ 6 Cε
1
2
−τ 6 Cε

1
4 ,

which gives (4.33).

Case 3: |vx(xi0)| > ε
1
2
−τ , for some τ ∈ (0, 1/4).

Arguing as before, we can assume that |x− xi0| 6 ε
1+τ
2 . Then, we define

(4.36) r := 2ε
1+τ
2 > 2|x− xi0 |.

As in Case 2, we can show that v is monotone in the interval (x − r, x + r). Thus, the
same proof of Lemma 4.6 in [28] applies, and gives us (4.33).
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Finally, (4.32) follows by showing that

(4.37)

∣∣∣∣∣∣∣∣
∑
i 6=i0

|xi−x|<r

ε

xi − x
−

∑
i 6=i0

|xi−xi0 |<r

ε

xi − xi0

∣∣∣∣∣∣∣∣ 6 Cγ,

which has been proven again in Lemma 4.6 in [28]. Combining (4.37) with (4.33), we have
(4.32), which completes the proof. �

The following proposition is an immediate consequence of Lemma 4.2, Proposition 4.4
and Lemma 4.5.

Proposition 4.6. Assume that v satisfies (2.1) and let xi and bi be defined as in (2.2)

and (2.3). Then, there exists c > 0 depending on the C1,1 norm of v such that if ρ > cε
1
2

and x ∈ (xMε + ρ, xNε − ρ), x = xi0 + εγ, where xi0 is the closest point to x, then

(4.38)
1

π

∑
i 6=i0

|xi−x|6ρ

εbi
xi − x

= I1,ρ1 [v](x) +O(γ) +
1

π

v(x+ ρ) + v(x− ρ)− 2v(x)

ρ
+ oε(1),

and

(4.39)
1

π

∑
i 6=i0

εbi
xi − x

= I1[v](x) + oε(1) +O(γ).

Proof. The result follows by choosing r such that ε
5
8 6 r 6 cε

1
2 6 ρ, and then applying

Lemmas 4.2, 4.5, and 4.4. �

Remark 4.7. If ε|γ| = |x− xi0| > cε
1
2 > r, then |x− xi| > r for all i and

1

π

∑
i 6=i0

|xi−x|6ρ

ε

xi − x
=

1

π

∑
r<|xi−x|6ρ

ε

xi − x

= I1,ρ1 [v](x) +
1

π

v(x+ ρ) + v(x− ρ)− 2v(x)

ρ
+ oε(1).

Therefore, we can assume

(4.40) ε
1
2 |γ| 6 C

in (4.38) and (4.39).

Lemma 4.8. Assume that v satisfies (2.1) and let xi be defined as in (2.2). Let φ be

defined by (1.8). Let 1 6 M < N 6 Nε and R > cε
1
2 , with c > 0 given by Proposition

4.6. Then, for all x ∈ (xM +R, xN −R),

(4.41)

∣∣∣∣∣
N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(x)

∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
,

with oε(1) independent of R and x.

Proof. Fix x ∈ (xM +R, xN −R), and let xi0 be the closest point to x. Then, we have

(4.42) x− xi > 0 for i 6 i0 − 1, x− xi < 0 for i > i0 + 1
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and by (2.5)

(4.43) v(xi0)− ε 6 v(x) 6 v(xi0) + ε.

By splitting the sum and using (4.43), we obtain

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
− v(x) 6

N∑
i=M
i 6=i0

εφ

(
x− xi
εδ

, bi

)
+ εφ

(
x− xi0
εδ

, bi0

)
− v(xi0) + ε.

Using the asymptotic estimate (2.16), (2.4), φ 6 1, and (4.42), we have that

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
− v(x)

6
N∑
i=M
i 6=i0

ε

(
H

(
x− xi
εδ

, bi

)
+
εδ

απ

biε

xi − x
+

K1ε
2δ2

(xi − x)2

)
+ 2ε− v(xi0)

= ε(n+
M,i0−1 − n

−
M,i0−1)− v(xi0) + 2ε+

εδ

απ

N∑
i=M
i 6=i0

biε

xi − x
+

N∑
i=M
i 6=i0

K1ε
2δ2

(xi − x)2
.

Notice that by (2.7),

εn+
M,i0−1 − εn

−
M,i0−1 − v(xi0) = −v(xM) + bMε− bi0ε.

We conclude that

(4.44)
N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(x) 6

εδ

απ

N∑
i=M
i 6=i0

biε

xi − x
+ Cε,

where we also used (4.2). By decomposing the sum in the right-hand side of the above
inequality as follows

(4.45)
N∑
i=M
i 6=i0

biε

xi − x
=

∑
i 6=i0

|xi−x|6R

biε

xi − x
+

N∑
i=M

|xi−x|>R

biε

xi − x

and applying (4.38) and (4.40), we obtain

(4.46)
εδ

απ

∣∣∣∣∣∣∣∣
∑
i6=i0

|xi−x|6R

biε

xi − x

∣∣∣∣∣∣∣∣ 6 Cε
1
2 δ = oε(1).

For the second term in (4.45), we have

(4.47)
εδ

απ

∣∣∣∣∣∣∣
N∑
i=M

|xi−x|>R

biε

xi − x

∣∣∣∣∣∣∣ 6
εδ

απ

N∑
i=M

|xi−x|>R

ε

R
6

εδ

απ

εNε

R
=
Cε2δNε

R
.
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Combining (4.44), (4.45), (4.46) and (4.47), we get

(4.48)
N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(x) 6 oε(1) +

Cε2δNε

R
.

Similarly, one can show that

(4.49)
N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(x) > oε(1)− Cε2δNε

R
.

This completes the proof. �

Lemma 4.9. Under the assumptions of Lemma 4.8, there exists C > 0 independent of ε
and R such that for all x > xN +R,

(4.50)

∣∣∣∣∣
N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(xN)

∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Furthermore, for all x < xM −R,

(4.51)

∣∣∣∣∣
N∑
i=M

εφ

(
x− xi
εδ

, bi

)∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Proof. First, suppose that x > xN + R. Then, x − xi > R for all i = M, . . . , N . The
sign of bi(x− xi) depends on the sign of bi. Then by decomposing the sum and applying
(2.16), we have

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
− v(xN)

6
N∑
i=M

ε

(
H

(
x− xi
εδ

, bi

)
+
εδ

απ

biε

xi − x
+

K1ε
2δ2

(xi − x)2

)
− v(xN)

= εn+
M,N − εn

−
M,N +

εδ

απ

N∑
i=M

biε

xi − x
+K1εδ

2

N∑
i=M

ε2

(xi − x)2
− v(xN).

Notice that by (2.7),

εn+
M,N − εn

−
M,N − v(xN) = −v(xM) + bMε.

Hence, we have

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(xN) 6

εδ

απ

N∑
i=M

biε

xi − x
+K1εδ

2

N∑
i=M

ε2

(xi − x)2
+ ε

6
εδ

απ

N∑
i=M

ε

R
+ Cεδ2 + ε

6 Cε2Nε
δ

R
+ Cεδ2 + ε

= oε(1) +
Cε2δNε

R
,
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using (4.2). One can similarly show that

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
+ v(xM)− v(xN) > oε(1)− Cε2δNε

R
,

which completes the proof of (4.50).
Next, suppose that x < xM −R. Notice that x− xi < −R for all i = M, . . . , N and by

(2.16), we obtain

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
6

N∑
i=M

ε

(
H

(
x− xi
εδ

, bi

)
+
εδ

απ

biε

xi − x
+

K1ε
2δ2

(xi − x)2

)

=
εδ

απ

N∑
i=M

biε

xi − x
+K1εδ

2

N∑
i=M

ε2

(xi − x)2
.

Thus, as before, we get

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
6 oε(1) +

Cε2δNε

R
.

Similarly, we can prove that

N∑
i=M

εφ

(
x− xi
εδ

, bi

)
> oε(1)− Cε2δNε

R
,

which gives (4.51). �

Proposition 4.10. Assume that v satisfies (2.1) and let xi and bi be defined as in (2.2)
and (2.3). Let φ be defined by (1.8) and let δ = δ(ε) be such that ε2Nεδ = oε(1). Then,
for all x ∈ R,

(4.52)

∣∣∣∣∣
Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(x)

∣∣∣∣∣ 6 oε(1),

where oε(1) is independent of x.

Proof. Estimate (4.52) is a consequence of the following inequality

(4.53)

∣∣∣∣∣
Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(x)

∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
,

for some C > 0 independet of ε.

Let us denote aε := ε2Nεδ = oε(1). Let R = Rε := max{a
1
2
ε , cε

1
2} = oε(1), with c given

in Proposition 4.6. If x ∈ (x1 + R, xNε − R), then (4.53) follows from Lemma 4.8 with
M = 1 and N = Nε. Next, let us assume x > xNε +R. Then, by (4.50), we have∣∣∣∣∣

Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(x)

∣∣∣∣∣ 6 |v(xNε)− v(x)|+ oε(1).

In the interval [xNε ,+∞), the oscillation of v is less or equal than ε, therefore

|v(xNε)− v(x)| 6 ε,
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from which (4.53) for x > xNε +R follows. By using (4.51), one can similarly prove (4.53)
when x < x1 −R.

Next, assume xNε −R 6 x 6 xNε +R. Define N to be an index such that

xN 6 xNε − 2R < xN+1 6 xNε ,

Using that v(x) = v(xNε) +O(R) = v(xN) +O(R), we get∣∣∣∣∣
Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(x)

∣∣∣∣∣
6

∣∣∣∣∣
Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(xNε)

∣∣∣∣∣+O(R)

=

∣∣∣∣∣∣∣
Nε∑
i=1

xi6xNε−2R

εφ

(
x− xi
εδ

, bi

)
+

Nε∑
i=1

xi>xNε−2R

εφ

(
x− xi
εδ

, bi

)
− v(xNε)

∣∣∣∣∣∣∣+O(R)

=

∣∣∣∣∣
N∑
i=1

εφ

(
x− xi
εδ

, bi

)
+

Nε∑
i=N+1

εφ

(
x− xi
εδ

, bi

)
− v(xNε)

∣∣∣∣∣+O(R)

6

∣∣∣∣∣
N∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(xN)

∣∣∣∣∣+

∣∣∣∣∣
Nε∑

i=N+1

εφ

(
x− xi
εδ

, bi

)∣∣∣∣∣+O(R).

By (4.50) with M = 1, we obtain

(4.54)

∣∣∣∣∣
N∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(xN)

∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Since 0 < φ < 1, we have

(4.55)

∣∣∣∣∣
Nε∑

i=N+1

εφ

(
x− xi
εδ

, bi

)∣∣∣∣∣ 6
Nε∑

i=N+1

ε = ε(n+
N+1,Nε

+ n−N+1,Nε
) = O(R),

where n+
N+1,Nε

+ n−N+1,Nε
is the total number of particles lying inside the interval

[xN+1, xNε ] ⊂ [xNε − 2R, xNε +R],

which by (4.1) can be estimated by CR/ε for some constant C > 0.
By (4.54) and (4.55), we have proven (4.53) when xNε − R 6 x 6 xNε + R. Similarly,

one can prove (4.53) when x1 − R 6 x 6 x1 + R, which concludes the proof of the
proposition. �

We conclude this section with the following result that will be used in Section 5. The
proof is an easy adaptation of the proof of Lemma 4.13 in [28].

Lemma 4.11. Assume that v satisfies (2.1) and let xi and bi be defined as in (2.2) and
(2.3). Then, there exists C > 0 such that for all x ∈ R,∣∣∣∣∣∑

i 6=i0

εbi
xi − x

∣∣∣∣∣ 6 C.
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Remark 4.12. Proposition 4.10 and Lemma 4.11 hold true if in (2.1) the assumption
v(−∞) = 0 is replaced by v(−∞) = m, for any m ∈ R. In this case formula (4.12) is
replaced by ∣∣∣∣∣

Nε∑
i=1

εφ

(
x− xi
εδ

, bi

)
− v(x) + εMε

∣∣∣∣∣ 6 oε(1),

with Mε = dm/εe.

5. Supersolutions of (1.1)

In this section, we construct global is space and local in time supersolutions of the
equation (1.1).

Lemma 5.1. Let v be a C1,1 function which is monotonic non-increasing in (−∞, x0),
non-decreasing in (x0,∞), constant in (x0 − σ, x0 + σ), for some x0 ∈ R and 0 < σ < 1.
Let xi(t) be the solution of the ODE system (2.9) with L > 0 and x0i and bi defined as in

(2.2) and (2.3). Then, there exists C > 0 depending on v and W such that if L = C/σ
1
2 ,

the function

(5.1) Hε(t, x) =
Nε∑
i=1

εφ

(
x− xi(t)

εδ
, bi

)
+

Nε∑
i=1

εδψ

(
x− xi(t)

εδ
, bi

)
+
εδL

α

is a supersolution of (1.1) in (0, σ/(2c0L)]×R, where φ is the solution of (1.8) and ψ is
the solution of (2.18).

Proof. To simplify the notation, we write N = Nε. Since v is monotonic in (−∞, x0) and
(x0,∞), the number of particles in each of the intervals is bounded by (sup v − inf v)/ε
so that εN 6 C. Notice that the points x0i such that x0i < x0 are associated to bi = −1
while points x0i > x0 to bi = −1. Moreover, since v is constant in (x0− σ, x0 + σ) we have
that

(5.2) x0i+1 − x0i > 2σ, if bi = −1, bi+1 = 1.

Since L > 0 the particles on the left of x0 move to the right, while particles on the right
of x0 move to the left. However, since the particles with opposite sign are far enough,
there is no collision for small times. More precisely, by the ODE system (2.9) and (5.2),
we see that for any t ∈ [0, σ/(2c0L)].

(5.3) xi+1(t)− xi(t) > σ if bi = −1, bi+1 = 1.

Particles with same orientation move in parallel so they never collide.
Now, for a fixed (t, x) ∈ [0, σ/(2c0L)]× R, define

Λ(t, x) = δ∂tH
ε(t, x)− I1[Hε(t, ·)](x) +

1

δ
W ′
(
Hε(t, x)

ε

)
.
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Define also zi(t) =
x− xi(t)

εδ
. Let i0 be the index such that xi0(t) is the closest point to

x. By direct computation, we obtain

Λ(t, x) = −
N∑
i=1

biẋiφ
′(zi, bi)−

N∑
i=1

δbiẋiψ
′(zi, bi)−

1

δ

N∑
i=1

I1[φ](zi, bi)−
N∑
i=1

I1[ψ](zi, bi)

+
1

δ
W ′

(
N∑
i=1

[φ̃(zi, bi) + δψ(zi, bi)] +
δL

α

)
,

where φ̃(zi, bi) := φ(zi, bi)−H(zi, bi). Notice that by the periodicity of W , W ′(φ(zi, bi)) =

W ′(φ̃(zi, bi)). Using ẋi = −c0biL and I1[φ](zi, bi) = W ′(φ̃(zi, bi)), we have

Λ(t, x) =
N∑
i=1

c0Lφ
′(zi, bi) +

N∑
i=1

δc0Lψ
′(zi, bi)−

1

δ

N∑
i=1

W ′(φ̃(zi, bi))−
N∑
i=1

I1[ψ](zi, bi)

+
1

δ
W ′

(
N∑
i=1

[φ̃(zi, bi) + δψ(zi, bi)] +
δL

α

)

= c0Lφ
′(zi0 , bi0)−

1

δ
W ′(φ̃(zi0 , bi0))− I1[ψ](zi0 , bi0)−

1

δ

N∑
i=1
i 6=i0

W ′(φ̃(zi, bi))

+
1

δ
W ′

φ̃(zi0 , bi0) +
N∑
i=1
i 6=i0

φ̃(zi, bi) +
N∑
i=1

δψ(zi, bi) +
δL

α

+ E0,

where

E0 :=
N∑
i=1
i 6=i0

c0Lφ
′(zi, bi) +

N∑
i=1

δc0Lψ
′(zi, bi)−

N∑
i=1
i 6=i0

I1[ψ](zi, bi).

By Taylor expansion of W ′ around φ̃(zi0 , bi0), we can write

Λ(t, x) = c0Lφ
′(zi0 , bi0)− I1[ψ](zi0 , bi0)−

1

δ

N∑
i=1
i 6=i0

W ′(φ̃(zi, bi))

+
1

δ
W ′′(φ̃(zi0 , bi0))

 N∑
i=1
i 6=i0

φ̃(zi, bi) +
N∑
i=1

δψ(zi, bi) +
δL

α

+ E0 + E1,

where

E1 := O

 N∑
i=1
i 6=i0

φ̃(zi, bi) +
N∑
i=1

δψ(zi, bi) +
δL

α


2

.
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Now, by Taylor expansion of W ′ around 0 and using that α = W ′′(0), we obtain

Λ(t, x) = c0Lφ
′(zi0 , bi0)− I1[ψ](zi0 , bi0) + (W ′′(φ̃(zi0 , bi0))−W ′′(0))

N∑
i=1
i 6=i0

φ̃(zi, bi)

δ
+ L

+ (W ′′(φ̃(zi0 , bi0))−W ′′(0))
L

α
+W ′′(φ̃(zi0 , bi0))

N∑
i=1

ψ(zi, bi) + E0 + E1 + E2

= c0Lφ
′(zi0 , bi0)− I1[ψ](zi0 , bi0) + (W ′′(φ̃(zi0 , bi0))−W ′′(0))

L

α

+W ′′(φ̃(zi0 , bi0))ψ(zi0 , bi0) +W ′′(φ̃(zi0 , bi0))
N∑
i=1
i 6=i0

ψ(zi, bi)

+ (W ′′(φ̃(zi0 , bi0))−W ′′(0))
N∑
i=1
i 6=i0

φ̃(zi, bi)

δ
+ L+ E0 + E1 + E2,

where

E2 :=
N∑
i=1
i 6=i0

O(φ̃(zi, bi))
2.

By using equation (2.18), we obtain

Λ(t, x) = (W ′′(φ̃(zi0 , bi0))−W ′′(0))
N∑
i=1
i 6=i0

φ̃(zi, bi)

δ
+ L+ E0 + E1 + E2 + E3,(5.4)

where

E3 := W ′′(φ̃(zi0 , bi0))
N∑
i=1
i 6=i0

ψ(zi, bi).

Similarly to Lemma 5.3 in [28], one can show using the estimates of Lemma 2.2 and
Lemma 2.3 that

(5.5) E0 + E1 + E2 + E3 = oε(1).

Now, by (2.16) and (4.2), we get
(5.6)∣∣∣∣∣∣∣

N∑
i=1
i 6=i0

φ̃(zi, bi)

δ

∣∣∣∣∣∣∣ 6
1

δαπ

∣∣∣∣∣∣∣
N∑
i=1
i 6=i0

biεδ

x− xi(t)

∣∣∣∣∣∣∣+
K1

δ

∣∣∣∣∣∣∣
N∑
i=1
i 6=i0

ε2δ2

(x− xi(t))2

∣∣∣∣∣∣∣ 6
1

απ

∣∣∣∣∣∣∣
N∑
i=1
i 6=i0

biε

x− xi(t)

∣∣∣∣∣∣∣+ Cδ,

for some constant C > 0. Recall that xi(t) = x0i − c0biLt and that xi0(t) is the closest
point to x among the particles xi(t). Going back at time 0, it is easy to see that x0i0 is
the closest point to x+ c0bi0Lt. We write

(5.7)
N∑
i=1
i 6=i0

biε

x− xi(t)
=

N∑
i=1

i 6=i0,x0i>x0

ε

(x+ c0Lt)− x0i
−

N∑
i=1

i 6=i0,x0i<x0

ε

(x− c0Lt)− x0i
.
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Assume x > x0 so that bi0 = 1. The case x < x0 can be treated similarly. Denote
y(t) := x+ c0Lt. Then, by Lemma 4.11 we have that∣∣∣∣∣∣∣∣

N∑
i=1

i 6=i0,x0i>x0

ε

y(t)− x0i

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
N∑
i=1
i 6=i0

εbi
y(t)− x0i

−
N∑
i=1

x0i<x0

εbi
y(t)− x0i

∣∣∣∣∣∣∣∣ 6 C +

∣∣∣∣∣∣∣∣
N∑
i=1

x0i<x0

ε

y(t)− x0i

∣∣∣∣∣∣∣∣ .
Notice that by (5.2) and (5.3), if x0i < x0 then x0i < y(t) − σ. Now, fix ρ > σ. By (4.1)
the number of particles in (y(t) − ρ, y(t) − σ) is bounded by Cρ/ε. This, together with
Nε 6 C yields∣∣∣∣∣∣∣∣

N∑
i=1

x0i<x0

ε

y(t)− x0i

∣∣∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣∣

N∑
i=1

x0i6y(t)−ρ

ε

y(t)− x0i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
N∑
i=1

y(t)−ρ<x0i<y(t)−σ

ε

y(t)− x0i

∣∣∣∣∣∣∣∣ 6
C

ρ
+
Cρ

σ
.

Choosing ρ = σ
1
2 the two last estimates give

(5.8)

∣∣∣∣∣∣∣∣
N∑
i=1

i 6=i0,x0i>x0

ε

(x+ c0Lt)− x0i

∣∣∣∣∣∣∣∣ 6
C

σ
1
2

.

If x0i < x0, then by (5.2) and (5.3), x0i < (x − c0Lt) − σ/2 for any t ∈ [0, σ/(2c0L)], so
that similar computations as above yield

(5.9)

∣∣∣∣∣∣∣∣
N∑
i=1

i 6=i0,x0i<x0

ε

(x− c0Lt)− x0i

∣∣∣∣∣∣∣∣ 6
C

σ
1
2

.

Combining (5.4), (5.5), (5.6), (5.7), (5.8) and (5.9), we finally obtain

Λ(t, x) > − C

σ
1
2

+ L > 0,

which implies that Hε is a supersolution of (1.1) by choosing L = C/σ
1
2 with C > 0

sufficiently large. �

6. Proof of Theorem 1.1

In this section, we prove our main Theorem 1.1. We first show that the functions uε

are bounded uniformly in ε. Since W ′(z) = 0 for any z ∈ Z, integers are stationary
solutions to (1.1). Let λ1, λ2 ∈ Z be such that λ1 6 infR u0 6 supR u0 6 λ2. Then by the
comparison principle we have that for any ε > 0

λ1 6 uε(t, x) 6 λ2 for all (t, x) ∈ (0,+∞)× R.

In particular, u+ := lim sup∗ε→0 u
ε is everywhere finite. We will prove that u+ is a viscosity

subsolution of (1.4). Similarly, we can prove that u− := lim inf∗ε→0u
ε is a supersolution

of (1.4). We will then show that

(6.1) u+(0, x) 6 u0(x) 6 u−(0, x),
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with u0 the initial condition in (1.4). The proof of (6.1) is postponed to Section 7. Then,
if u is the viscosity solution of (1.4), by the comparison principle,

(6.2) u+ 6 u 6 u−.

Since the reverse inequality u− 6 u+ always holds true, we conclude that the two functions
coincide with u and that uε → u as ε→ 0, uniformly on compact sets.

Let us start by proving that u+ is a viscosity subsolution of (1.4). Let η be a smooth
bounded function such that

(6.3) u+(t, x)− η(t, x) < u+(t0, x0)− η(t0, x0) = 0 for all (t, x) 6= (t0, x0).

We separate the proof into two cases.

6.1. Case 1: Test function η with ∂xη(t0, x0) = 0.
In this case, we want to show that

(6.4) ∂tη(t0, x0) 6 0.

Without loss of generality, we may assume that η has the form

(6.5) η(t, x) = h(x) + g(t)

with g any smooth function and h satisfying

(6.6)


h(x) = a(x− x0)2 for |x− x0| < ρ

h is non-increasing in (−∞, x0)
h is non-decreasing in (x0,+∞)

for some a, ρ > 0. Fix σ > 0 such that 4σ < ρ.
We are going to construct a global in space supersolution of (1.1) in an interval around

t0 by using Lemma 5. We cannot apply the lemma to the function η as the required flat
condition is not satisfied by η. Therefore, we consider the function ησ(t, x) := hσ(x)+g(t),
where hσ(x) = max{h(x), a(2σ)2}. Notice that ησ > η, ησ 6 η+a(2σ)2 and ησ is constant
in the interval (x0 − 2σ, x0 + 2σ). However, ησ is not of class C1,1. To overcome this
problem, we consider any C1,1 function η̃σ such that

η̃σ(t, x) = h̃σ(x) + g(t),

with h̃σ satisfying

(6.7)


h̃σ > hσ > h

h̃σ(x) = hσ(x) = a(2σ)2 if |x− x0| 6 σ

h̃σ is non-increasing in (−∞, x0)
h̃σ is non-decreasing in (x0,+∞).

For example, the function h̃σ(x) defined for |x− x0| < ρ by

h̃σ(x) =


2a(x− x0 − σ)2 + 4aσ2 if x > x0 + σ

4aδ2 if |x− x0| 6 σ

2a(x− x0 + σ)2 + 4aσ2 if x < x0 − σ
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and extended to be monotonic, bounded and above h outside (x0−ρ, x0 +ρ) would work.
Moreover, since uε is bounded uniformly in ε, without loss of generality we can assume
that for all ε > 0 and all t > 0,

(6.8) η̃σ(t, x) > uε(t, x) if |x− x0| > 1.

Finally, since u+ − η attains a strict maximum at (t0, x0) and η̃σ > η, for all R > 0 there
exists ε0 = ε0(R) such that for ε < ε0

(6.9) uε(t, x)− η̃σ(t, x) < 0 for all (t, x) ∈ Q1,1(t0, x0) \QR,R(t0, x0).

Next, we set

(6.10) c :=
1

4c0L
,

with L to be determined. Define x0i and bi, i = 1, . . . , Nε as in as in (2.2) and (2.3) for the
function η̃σ(t0− cσ, ·). Since η̃σ(t, ·) is monotonic in (−∞, x0) and (x0,∞), the number of
particles in each interval is bounded by (sup η̃σ− inf η̃σ)/ε so that εNε 6 C. In particular
the condition ε2Nεδ = oε(1) is satisfied and we are in position to apply Proposition 4.10
(recall Remark 4.12) to get

(6.11) η̃σ(t0 − cσ, x) =
Nε∑
i=1

εφ

(
x− x0i
εδ

, bi

)
+ εMε + oε(1),

where Mε := dη̃σ(t0 − cσ,−∞)/εe. By (6.8), (6.9) with R = cσ, and (6.11) we also have

(6.12) uε(t0 − cσ, x) 6
Nε∑
i=1

εφ

(
x− x0i
εδ

, bi

)
+ εMε + oε(1).

Let xi(t) be the solution of the ODE system (2.9) with initial condition xi(t0 − cσ) = x0i ,
that is

xi(t) = x0i − bic0L[t− (t0 − cσ)].

Define

Hε(t, x) :=
Nε∑
i=1

εφ

(
x− xi(t)

εδ
, bi

)
+

Nε∑
i=1

εδψ

(
x− xi(t)

εδ
, bi

)
+ εMε +

εδL

α
+ ε

⌈
oε(1)

ε

⌉
,

with φ and ψ the solutions of (1.8) and (2.18) respectively. Notice that

(6.13)

∣∣∣∣∣
Nε∑
i=1

εδψ

(
x− xi(t)

εδ
, bi

)∣∣∣∣∣ 6 CεNεδ 6 Cδ = oε(1).

By (6.12) and (6.13) we can choose oε(1) in the definition of Hε such that

Hε(t0 − cσ, x) > uε(t0 − cσ, x).

Now, by Lemma 5.1 if

(6.14) L =
C0

σ
1
2

with C0 large enough, the function Hε is supersolution of (1.1) in [t0 − cσ, t0 + cσ] × R.
Therefore, by the comparison principle, we obtain

(6.15) Hε(t, x) > uε(t, x) for any (t, x) ∈ [t0 − cσ, t0 + cσ]× R.
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Consider a sequence (tε, xε) converging to (t0, x0) as ε→ 0. By (6.15) and (6.13) we have
that

uε(tε, xε) 6 Hε(tε, xε)

=
Nε∑
i=1

εφ

(
xε − xi(tε)

εδ
, bi

)
+ εMε + oε(1)

=
Nε∑
i=1

εφ

(
(xε + bic0L(tε − t0 + cσ))− x0i

εδ
, bi

)
+ εMε + oε(1).

(6.16)

Next we use the following result.

Lemma 6.1. We have that,

Nε∑
i=1

εφ

(
(xε + bic0L(tε − t0 + cσ))− x0i

εδ
, bi

)

=
Nε∑
i=1

εφ

(
(xε + c0L(tε − t0 + cσ))− x0i

εδ
, bi

)
+ oε(1).

(6.17)

We postpone the proof of Lemma 6.1 to Section 9.
Now, from (6.16), Lemma 6.1, Proposition 4.10, the definition of x0i and using that

η̃σ(t, x) 6 η(t, x) + Cσ2 if |x− x0| 6 σ, we infer that

uε(tε, xε) 6
Nε∑
i=1

εφ

(
(xε + bic0L(tε − t0 + cσ))− x0i

εδ
, bi

)
+ εMε + oε(1)

= η̃σ(t0 − cσ, xε + c0L(tε − t0 + cσ)) + oε(1)

6 η(t0 − cσ, xε + c0L(tε − t0 + cσ)) + oε(1) + Cσ2.

By passing to lim sup∗ as ε→ 0, we obtain

u+(t0, x0) 6 η(t0 − cσ, x0 + cc0Lσ) + Cσ2.

Since u+(t0, x0) = η(t0, x0), we also have

η(t0, x0)− η(t0 − cσ, x0) 6 η(t0 − cσ, x0 + cc0Lσ)− η(t0 − cσ, x0) + Cσ2,

by subtracting η(t0 − cσ, x0) on both sides. Now, recalling the expression of η with h as
in (6.6), (6.10) and (6.14), we see that the inequality above yields

η(t0, x0)− η(t0 − k0σ
3
2 , x0) 6 a

(σ
4

)2
+ Cσ2,

where k0 := 1/(4c0C0). By dividing both sides by k0σ
3
2 and taking the limit as σ → 0+,

we finally get (6.4).

6.2. Case 2: Test function η with ∂xη(t0, x0) 6= 0.
Without loss of generality we assume that

(6.18) ∂xη(t0, x0) > 0.

The goal is to show that

(6.19) ∂tη(t0, x0) 6 c0∂xη(t0, x0) I1[η(t0, ·)](x0).
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We start with the following asymptotic result whose proof is postponed to Section 8.

Lemma 6.2. Let v1, v2, w1, w2 be defined as in (2.12) and (2.13). Then, there exists
L > 0 such that for all (t, x) ∈ (0,+∞)× R
max{v1(x+ c0Lt), w1(x− c0Lt)} 6 u−(t, x) 6 u+(t, x) 6 min{v2(x+ c0Lt), w2(x− c0Lt)}.

Without loss of generality we may assume that η satisfies

(6.20) η(t, x) = v2(x+ c0Lt) if x < −K, η(t, x) = w2(x− c0Lt) if x > K,

for K large enough and L > 0 given in Lemma 6.2. Indeed, assume that (6.19) holds
true for any test function satisfying (6.20). If η̃ is any test function satisfying (6.3), by
Lemma 6.2 we can always build a function η such that η = η̃ in a neighborhood of (t0, x0),
η 6 η̃, and η satisfies (6.20). By ∂tη(t0, x0) = ∂tη̃(t0, x0), ∂xη(t0, x0) = ∂xη̃(t0, x0) and
I1[η(t0, ·)](x0) 6 I1[η̃(t0, ·)](x0) and (6.19) we infer that

∂tη̃(t0, x0) 6 c0∂xη̃(t0, x0) I1[η̃(t0, ·)](x0),
as desired. Condition (6.20) implies that for any T > 0 the points xi = xi(t) defined as
in (2.2) for the function η(t, ·) with t ∈ [0, T ] belong to the set [−Kε − c0LT,Kε + c0LT ]
with Kε defined as in Section 2.2. Therefore, the number of such particles Nε = Nε(t)
satisfies Nε 6 C(Kε + c0LT )/ε. In particular, by (2.14),

(6.21) ε2Nεδ = oε(1).

This will allow us to apply Proposition 4.10 to v(x) = η(t, x) with t close to t0.
Next, the proof of (6.19) is an adaptation of the proof given in [28] in the monotonic

case, therefore we will skip some details and refer to the corresponding results in [28].
Suppose by contradiction that

(6.22) ∂tη(t0, x0) > c0∂xη(t0, x0) I1[η(t0, ·)](x0).
Denote

L0 := I1[η(t0, ·)](x0).
By (6.18) and (6.22), there exist 0 < ρ < 1 and L1 > 0 such that

(6.23) ∂xη(t, x) >
∂xη(t0, x0)

2
> 0 for all (t, x) ∈ Q2ρ,2ρ(t0, x0),

and

(6.24) ∂tη(t, x) > c0∂xη(t, x)(L0 + L1) for all (t, x) ∈ Q2ρ,2ρ(t0, x0).

Define x0i = xi(t0) and bi, i = 1, . . . , Nε, as in (2.2) and (2.3) for the function η at
t = t0. For 0 < R � ρ to be determined, let x0Mρ

be the biggest point which is smaller

than x0 − (ρ+R), and x0Nρ the lowest point bigger than x0 + (ρ+R), that is

(6.25) x0Mρ
< x0 − (ρ+R) 6 x0Mρ+1

and

(6.26) x0Nρ−1 6 x0 + (ρ+R) < x0Nρ .

In other words, {x0Mρ
, x0Mρ+1, ..., x

0
Nρ−1, x

0
Nρ
} are the particle points in the interval (x0−(ρ+

R), x0 + (ρ + R)). By definition, there exists J0 ∈ {1, ..., Nε} such that η(t0, x
0
Mρ

) = J0ε,

and since η(t0, ·) is increasing in (x0 − (ρ+R), x0 + (ρ+R)), we have that

η(t0, x
0
Mρ+i) = (i+ J0)ε, for i = 0, 1, ..., Nρ −Mρ := Kρ.
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Define B0 := ∂xη(t0, x0)/(2‖∂tη‖∞). Now, for any time t such that |t − t0| < B0R, we
define a set

(6.27) Xi(t) := {x ∈ (x0 − (ρ+ 3R), x0 + (ρ+ 3R)) : η(t, x) = (i+ J0)ε},

for i = 0, 1, ..., Kρ.

Lemma 6.3. Let B0 := ∂xη(t0, x0)/(2‖∂tη‖∞) and Xi(t) be defined by (6.27), i = 0, . . . , Kρ.
Then, there exists ε0 = ε0(ρ) such that for ε < ε0 and R < ρ/3, Xi(t) is a singleton, that
is, Xi(t) = {ζ i(t)}, and ζ i ∈ C1(t0 −B0R, t0 +B0R) and for |t− t0| < B0R,

(6.28) |ζ̇ i(t)| 6 B−10 ,

(6.29) x0 + ρ < ζKρ(t) < x0 + ρ+ 3R,

(6.30) x0 − (ρ+ 3R) < ζ0(t) < x0 − ρ.

In particular (t, ζ i(t)) ∈ Q2ρ,2ρ(t0, x0).

Proof. By the monotonicity of η, Xi(t) is a singleton. The rest of the proof of Lemma 6.3
directly follows the proof of Lemma 5.1 in [28]. �

Therefore, by choosing R < ρ/3, we have that (t, ζ i(t)) ∈ Q2ρ,2ρ(t0, x0) and

(6.31) η(t, ζ i(t)) = (i+ J0)ε,

for i = 0, 1, ..., Kρ. By Lemma 6.3, ζ i(t) is of class C1(t0−B0R, t0 +B0R), allowing us to
differentiate (6.31) in t, which yields

∂tη(t, ζ i(t)) + ∂xη(t, ζ i(t))ζ̇ i(t) = 0.

Using (6.24), for |t− t0| < B0R, we obtain

(6.32) −ζ̇i(t) > c0(L0 + L1), i = 0, 1, . . . , Kρ.

Next, we will construct a supersolution of (1.1) in QB0R,R(t0, x0) for R� ρ < 1. Since
the maximum of u+ − η is strict, there exists γR > 0 such that

(6.33) u+ − η 6 −2γR < 0 in Q2ρ,2ρ(t0, x0) \QB0R,R(t0, x0).

Then, we define

(6.34) Φε(t, x) :=

{
hε(t, x) + εδL1

α
− ε

⌊
γR
ε

⌋
for (t, x) ∈ QB0R,

ρ
2
(t0, x0)

uε(t, x) outside,

where

hε(t, x) =

Kρ∑
i=0

ε

(
φ

(
x− ζ i(t)

εδ
, 1

)
+ δψ

(
x− ζ i(t)

εδ
, 1

))

+

Mρ−1∑
i=1

εφ

(
x− x0i
εδ

, bi

)
+

Nε∑
i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)(6.35)

with φ a solution the (1.8) and ψ the solution of (2.18) with L = L0 + L1.
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Lemma 6.4. There exist 0 < R� ρ and ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, the
function Φε defined by (6.34) satisfies

(6.36) Φε > uε outside QB0R,R(t0, x0),

(6.37) Φε 6 η + oε(1)− ε
⌊γR
ε

⌋
in QB0R,R(t0, x0),

and

(6.38) δ∂tΦ
ε > I1[Φε]− 1

δ
W ′
(

Φε

ε

)
in QB0R,R(t0, x0),

We are now in position to conclude the proof for Case 2. By (6.36) and (6.38) and the
comparison principle, Proposition 2.7, we have

uε(t, x) 6 Φε(t, x) for all (t, x) ∈ QB0R,R(t0, x0).

Passing to the upper limit as ε → 0 and using (6.37) and that u+(t0, x0) = η(t0, x0), we
obtain

0 6 −γR,
which is a contradiction. This completes the proof of (6.19).
Proof of Lemma 6.4. We divide the proof of Lemma 6.4 in several steps. To prove
(6.36) and (6.37), we will need the following lemma whose proof is postponed to Section
9.

Lemma 6.5. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0 and for any
(t, x) ∈ QB0R,ρ−R(t0, x0), we have

|hε(t, x)− η(t, x)| 6 oε(1).

Proof of (6.36). By definition (6.34) of Φε, Φε(t, x) = uε(t, x) outside of QB0R,
ρ
2
(t0, x0).

Next, by Lemma 6.5 and (6.33), for (t, x) ∈ QB0R,
ρ
2
(t0, x0) \QB0R,R(t0, x0),

Φε(t, x) = hε(t, x) +
εδL1

α
− ε

⌊γR
ε

⌋
> η(t, x) + oε(1)− ε

⌊γR
ε

⌋
> uε(t, x).

This concludes the proof of (6.36).

Proof of (6.37). By Lemma 6.5, for (t, x) ∈ QB0R,R(t0, x0)

Φε(t, x) = hε(t, x) +
εδL1

α
− ε

⌊γR
ε

⌋
6 η(t, x) + oε(1)− ε

⌊γR
ε

⌋
,

which gives (6.37).

For |x − x0| > ρ − R we obtain a worse approximation result than the one in Lemma
6.5 as shown below. This is due to the fact that we have choosen the particles xi to be
constant in time, equal to x0i , for i < Mρ and i > Nρ.

Lemma 6.6. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, if |t− t0| < B0R,
and |x− x0| > ρ−R, then

|hε(t, x)− η(t, x)| 6 oε(1) +O(R).
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We postpone the proof of Lemma 6.6 to Section 9.

Corollary 6.7. There exists ε0 = ε0(R, ρ) > 0 such that for any ε < ε0, R < ρ/4, and
any (t, x) ∈ QB0R,R(t0, x0), we have

(6.39) I1[Φε(t, ·)](x) 6 I1[hε(t, ·)](x) + oε(1) +
oR(1)

ρ
.

Proof. The corollary is a consequence of Lemma 6.5, Lemma 6.6 and the definition (6.34)
of Φε. For details, we refer to the proof of Corollary 5.7 in [28]. �

Now, we are ready to prove (6.38).
Proof of (6.38). Denote

Λ := δ∂tΦ
ε − I1[Φε] +

1

δ
W ′
(

Φε

ε

)
.

We want to show that Λ(t, x) > 0 for all (t, x) ∈ QB0R,R(t0, x0). Fix (t, x) ∈ QB0R,R(t0, x0).
Let i0 be such that ζ i0(t) is the closest point to x. Then, x = ζ i0(t) + εγ, with |γ| 6
2/|∂xη(t0, x0)| by (4.3) and (6.23). Define

zi(t) :=
x− ζ i(t)

εδ
, z0i :=

x− x0i
εδ

and φ̃(z, bi) := φ(z, bi)−H(z, bi),

with H(z, b) defined as in (2.8). Using Corollary 6.7, equations (1.8) and (2.18), perform-
ing Taylor expansions, as in the proof of Lemma 5.3 in [28], we obtain

Λ(t, x) > (W ′′(φ(zi0), 1)−W ′′(0))

1

δ

Kρ∑
i=0
i 6=i0

φ̃(zi, 1) +
1

δ

Mρ−1∑
i=1

φ̃(z0i , bi) +
1

δ

Nε∑
i=Nρ+1

φ̃(z0i , bi)−
L0

α


+ L1 + E0 + E1 + E2 + E3 + E4,

(6.40)

where

E0 = oε(1) +
oR(1)

ρ

E1 = −
Kρ∑
i=0
i 6=i0

ζ̇ i(t)φ′(zi, 1)− δ
Kρ∑
i=0
i 6=i0

ζ̇ i(t)ψ′(zi, 1)− δζ̇ i0(t)ψ′(zi0 , 1)

E2 =
1

δ
O

 Kρ∑
i=0
i 6=i0

[φ̃(zi, 1) + δψ(zi, 1)] + δψ(zi0 , 1) +

Mρ−1∑
i=1

φ̃(z0i , bi) +
Nε∑

i=Nρ+1

φ̃(z0i , bi) +
δL1

α


2

E3 =
1

δ

Kρ∑
i=0
i 6=i0

O(φ̃(zi, 1))2 +
1

δ

Mρ−1∑
i=1

O(φ̃(z0i , bi))
2 +

1

δ

Nε∑
i=Nρ+1

O(φ̃(z0i , bi))
2

E4 = W ′′(φ̃(zi0 , 1))

Kρ∑
i=0
i 6=i0

ψ(zi, 1)−
Kρ∑
i=0
i 6=i0

I1[ψ](zi, 1).
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We have estimates for the error terms E1, E2, E3 and E4 as stated in the following
lemma.

Lemma 6.8. For i > 1, the error Ei defined as above satisfies

Ei = O(δ).

Proof. The proof follows directly the proof of Lemma 5.9 in [28]. �

Furthermore, we claim the following.

Lemma 6.9.
(6.41)

(W ′′(φ(zi0 , 1))−W ′′(0))

1

δ

Kρ∑
i=0
i 6=i0

φ̃(zi, 1)− 1

α
I1,ρ1 [η(t0, ·)](x0)

 = oε(1)+oR(1)+oρ(1)+O

(
R

ρ

)
,

and

(6.42)
1

δ

Mρ−1∑
i=1

φ̃(z0i , bi) +
1

δ

Nε∑
i=Nρ+1

φ̃(z0i , bi)−
1

α
I2,ρ1 [η(t0, ·)](x0) = oε(1) + oρ(1) +O

(
R

ρ

)
.

Proof. By the monotonicity of η in QB0R,R(t0, x0), the proof of (6.41) directly follows the
proof of Lemma 5.8 in [28]. With a slight modification of the proof of (5.32) in Lemma
5.8 in [28], using (4.2) and Lemma 4.3 presented in this paper, we now show the estimate
(6.42). By (2.16) and (4.2), we have that

1

δ

Mρ−1∑
i=1

φ̃(z0i , bi) +
1

δ

Nε∑
i=Nρ+1

φ̃(z0i , bi) 6
1

απ

Mρ−1∑
i=1

εbi
x0i − x

+K1

Mρ−1∑
i=1

ε2δ

(x0i − x)2

+
1

απ

Nε∑
i=Nρ+1

εbi
x0i − x

+K1

Nε∑
i=Nρ+1

ε2δ

(x0i − x)2

6
1

απ

Mρ−1∑
i=1

εbi
x0i − x

+
1

απ

Nε∑
i=Nρ+1

εbi
x0i − x

+O(δ).

(6.43)

Since |x− x0| < R and |x0i − x0| > ρ+R for i 6Mρ− 1 and i > Nρ + 1, we have that for
those indices |x − x0i | > ρ. However, there may be particles x0i with i = Mρ, . . . , Nρ for
which |x− x0i | > ρ. Therefore, we can write

(6.44)
1

απ

Mρ−1∑
i=1

εbi
x0i − x

+
1

απ

Nε∑
i=Nρ+1

εbi
x0i − x

=
1

απ

Nε∑
i=Mε

|x−x0i |>ρ

εbi
x0i − x

− 1

απ

Nρ∑
i=Mρ

|x−x0i |>ρ

εbi
x0i − x

.

Notice that, by (4.1), (6.25), (6.26), and |x − x0| < R, the number of particles x0i ,
i = Mρ, . . . , Nρ such that |x− x0i | > ρ is bounded by CR/ε. Therefore,∣∣∣∣∣∣∣∣

Nρ∑
i=Mρ

|x−x0i |>ρ

εbi
x0i − x

∣∣∣∣∣∣∣∣ 6
CR

ρ
.
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By Lemma 4.3 and the estimate above, then (6.44) becomes

1

απ

Mρ−1∑
i=1

εbi
x0i − x

+
1

απ

Nε∑
i=Nρ+1

εbi
x0i − x

= I2,ρ1 [η(t0, ·)](x0) + oε(1) + oρ(1) +O

(
R

ρ

)
.

(6.45)

Combining (6.43) and (6.45) yields

1

δ

Mρ−1∑
i=1

φ̃(z0i , bi) +
1

δ

Nε∑
i=Nρ+1

φ̃(z0i , bi)−
1

α
I2,ρ1 [η(t0, ·)](x0) 6 oε(1) + oρ(1) +O

(
R

ρ

)
.

Similarly, one can prove the opposite inequality. This proves (6.42).
�

As a consequence of Lemma 6.8 and Lemma 6.9, the inequality (6.40) becomes

Λ(t, x) > L1 + oε(1) + oR(1) + oρ(1) +
oR(1)

ρ
.

We choose R� ρ� 1 and ε0 so small that for any ε < ε0,∣∣∣∣oε(1) + oR(1) + oρ(1) +
oR(1)

ρ

∣∣∣∣ < L1

2
.

Then,

Λ(t, x) >
L1

2
> 0.

This completes the proof of (6.38).

7. Proof of (6.1)

To prove (6.1) we are going to build supersolutions of (1.1) for small times to compare to
uε. Fix any point x0 ∈ R. Since u0 is a C1,1 function, there exists a parabola a(x−y0)2+b
touching from above u0 at x0, for some y0, b ∈ R and a > 0. Since u0 is bounded, there
exists a bounded smooth function g touching u0 from above such that

g > u0, g(x0) = u0(x0)

g = a(x− y0)2 + b in (x0 − 1, x0 + 1)

g is non-increasing in (−∞, y0)
g is non-decreasing in (y0,+∞).

Finally, following the construction of Section 6.1, for σ > 0 small enough it is easy to see
that there exists a C1,1 function gσ such that

gσ > g, gσ(x0)→ g(x0) as σ → 0

gσ is constant in (y0 − σ, y0 + σ)

gσ is non-increasing in (−∞, y0)
gσ is non-decreasing in (y0,+∞).

Let x0i and bi, i = 1, . . . , Nε be defined as in (2.2) and (2.3) for the function gσ.
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Let Mε := dgσ(−∞)/εe. Then, by Lemma 5.1 there exists L = C/σ
1
2 such that if xi(t)

is the solution of the ODE system (2.9) with xi(0) = x0i , the function

Hε(t, x) =
Nε∑
i=1

εφ

(
x− xi(t)

εδ
, bi

)
+

Nε∑
i=1

εδψ

(
x− xi(t)

εδ
, bi

)
+ εMε + ε

⌈
oε(1)

ε

⌉
+
εδL

α

is supersolution of (1.1) in (0, σ/(2c0L)]×R. Since uε(0, x) = u0(x) 6 gσ(x), by Proposi-
tion 4.10 (recall Remark 4.12) and the fact that

Nε∑
i=1

εδψ

(
x− xi(t)

εδ
, bi

)
= oε(1),

we can choose oε(1) in the definition of Hε such that uε(0, x) 6 Hε(0, x). Then, by the
comparison principle,

uε(t, x) 6 Hε(t, x) for all (t, x) ∈ (0, σ/(2c0L)]× R.

Consider any sequence (tε, xε) converging to (0, x0) as ε→ 0. As in the proof of Theorem
1.1, we have

uε(tε, xε) 6 Hε(tε, xε)

=
Nε∑
i=1

εφ

(
xε − xi(t)

εδ
, bi

)
+ εMε + oε(1)

=
Nε∑
i=1

εφ

(
(xε + bic0Ltε)− x0i

εδ
, bi

)
+ εMε + oε(1)

=
Nε∑
i=1

εφ

(
(xε + c0Ltε)− x0i

εδ
, bi

)
+ εMε + oε(1)

= gσ(xε + c0Ltε) + oε(1).

Passing to the lim sup∗ we get

u+(0, x0) 6 gσ(x0).

Finally, letting σ → 0 and using that gσ(x0)→ g(x0) = u0(x0) as σ → 0, we get

u+(0, x0) 6 u0(x0)

as desired.

8. Asymptotic behavior of the limit function: proof of Proposition 1.3

In this section, we investigate the asymptotic behavior as x→ ±∞ of the limit function
u. We first prove Lemma 6.2 and then Proposition 1.3.

The following result is proven in [28, Section 6].

Lemma 8.1. Let v0 be a C1,1 non-decreasing function and let vε be the solution of (1.1)
with vε(0, x) = v0(x). Then, there exists L > 0 independent of ε such that for all (t, x) ∈
(0,+∞)× R,

v0(x− c0Lt) + oε(1) 6 vε(t, x) 6 v0(x+ c0Lt) + oε(1).

Similarly, one can prove
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Lemma 8.2. Let w0 be a C1,1 non-increasing function and let wε be the solution of (1.1)
with wε(0, x) = w0(x). Then, there exists L > 0 independent of ε such that for all
(t, x) ∈ (0,+∞)× R,

w0(x+ c0Lt) + oε(1) 6 wε(t, x) 6 w0(x− c0Lt) + oε(1).

8.1. Proof of Lemma 6.2. Let v2 and w2 defined as in (2.13). Let vε be the solution
of (1.1) with initial condition vε(0, x) = v2(x) and let wε be the solution of (1.1) with
initial condition wε(0, x) = w2(x). By the comparison principle, uε(t, x) 6 vε(t, x) and
uε(t, x) 6 wε(t, x) for all (t, x) ∈ (0,+∞)× R. The inequality

u−(t, x) 6 u+(t, x) 6 min{v2(x+ c0Lt), w2(x− c0Lt)}
then follows from Lemma 8.1 and Lemma 8.2. Similarly, one can prove that

u−(t, x) > max{v1(x+ c0Lt), w1(x− c0Lt)},
and this concluded the proof of the lemma.

8.2. Proof of Proposition 1.3. By Theorem 1.1 we know that u− = u+ = u with u the
solution of (1.4). Then, the limits in (1.6) immediately follow from Lemma 6.2. Finally,
estimate (1.7) is a consequence of the comparison principle and the fact that constants
are solutions to the equation ∂tu = c0|∂xu| I1[u].

9. Appendix

Lemma 9.1. There exists C > 0 independent of ε and ρ such that, for any x ∈ R,∣∣∣∣∣
Kρ∑
i=0

εδψ

(
x− ζ i(t)

εδ
, 1

)∣∣∣∣∣ 6 Cδ.

Proof. Using (6.31) and ‖ψ‖∞ 6 C for some C > 0, we have∣∣∣∣∣
Kρ∑
i=0

εδψ

(
x− ζ i(t)

εδ
, 1

)∣∣∣∣∣ 6 δ‖ψ‖∞ε(Kρ + 1)

= δ‖ψ‖∞ε(Kρ + J0 − J0 + 1)

= δ‖ψ‖∞(η(t, ζKρ(t))− η(t, ζ0(t)) + ε)

6 Cδ.

�

9.1. Proof of Lemma 6.5. To prove the lemma, we will show the following claims.

Claim 1:
∣∣∣∑Kρ

i=0 εφ
(
x−ζi(t)
εδ

, 1
)

+ εJ0 − η(t, x)
∣∣∣ 6 oε(1) + Cε2δNε

R
.

Proof of Claim 1. If (t, x) ∈ QB0R,ρ−R(t0, x0), then by Lemma 6.3 x ∈ (ζ0(t)+R, ζKρ(t)−
R). Then, Claim 1 follows from Lemma 4.8 and the fact that η(t, ζ0(t)) = J0ε.

Claim 2:
∣∣∣∑Mρ−1

i=1 εφ
(
x−x0i
εδ

, bi

)
− J0ε

∣∣∣ 6 oε(1) + Cε2δNε
R

.

Proof of Claim 2. By using (6.25), if (t, x) ∈ QB0R,ρ−R(t0, x0), then x > x0Mρ−1 + R.

Claim 2 then follows from (4.50) and the fact that η(t0, x
0
1) = ε and η(t0, x

0
Mρ−1) = J0ε−ε.

Claim 3:
∣∣∣∑Nε

i=Nρ+1 εφ
(
x−x0i
εδ

, bi

)∣∣∣ 6 oε(1) + Cε2δNε
R

.
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Proof of Claim 3. By using (6.26), if (t, x) ∈ QB0R,ρ−R(t0, x0), then x < x0Nρ+1 − R.

Claim 3 then immediately follows from (4.51).

Finally, the lemma is a consequence of Claims 1-3, Lemma 9.1 and (6.21).

9.2. Proof of Lemma 6.6. We first consider |x − x0| > ρ + 4R. Let us assume that
x > x0 + ρ + 4R. One can similarly prove the lemma for x < x0 − (ρ + 4R). We divide
the proof into three claims as follows.

Claim 1:
∣∣∣∑Kρ

i=0 εφ
(
x−ζi(t)
εδ

, 1
)
− εKρ

∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Proof of Claim 1. If |t − t0| < B0R and x > x0 + ρ + 4R, then by Lemma 6.3
x > ζKρ(t) + R. Therefore, Claim 1 follows immediately by (4.50) and the fact that
η(t, ζKρ(t))− η(t, ζ0(t)) = εKρ.

Claim 2:
∣∣∣∑Mρ−1

i=1 εφ
(
x−x0i
εδ

, bi

)
− εJ0

∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Proof of Claim 2. By (6.25), if x > x0 + ρ + 4R, then x > x0Mρ
+ R. Claim 2 then

follows from (4.50) and the fact that η(t0, x
0
Mρ−1) = J0ε− ε.

Claim 3:
∣∣∣∑Nε

i=Nρ+1 εφ
(
x−x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t, x)

∣∣∣ 6 oε(1) +
Cε2δNε

R
+O(R).

Proof of Claim 3. By (6.26), if x > x0 + ρ + 4R and in addition x < x0Nε − R, then
x ∈ (x0Nρ + R, x0Nε − R). By Lemma 4.8 and the fact that η(t0, x

0
Nρ+1) = ε(Kρ + J0 + 1),

we obtain∣∣∣∣∣∣
Nε∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t, x)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
Nε∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t0, x)

∣∣∣∣∣∣+ |η(t0, x)− η(t, x)|

6 oε(1) +
Cε2δNε

R
+O(R),

using |η(t0, x)− η(t, x)| 6 O(R). This proves Claim 3 with x < x0Nε −R.
Next, suppose that x > x0Nε +R. In this case, we apply (4.50) to obtain∣∣∣∣∣∣

Nε∑
i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t, x)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
Nε∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t0, x

0
Nε)

∣∣∣∣∣∣+ |η(t0, x
0
Nε)− η(t, x)|

6 oε(1) +
Cε2δNε

R
+O(R),

where, in the last inequality, we used that

(9.1) |η(t0, x
0
Nε)− η(t, x)| 6 |η(t0, x

0
Nε)− η(t0, x)|+ |η(t0, x)− η(t, x)| 6 ε+O(R).
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Finally, suppose x0Nε −R 6 x 6 x0Nε +R. Define N to be an index such that

x0N 6 x0Nε − 2R < x0N+1 6 x0Nε .

We have ∣∣∣∣∣∣
Nε∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t, x)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
N∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t0, x

0
N)

∣∣∣∣∣∣
+

∣∣∣∣∣
Nε∑

i=N+1

εφ

(
x− x0i
εδ

, bi

)∣∣∣∣∣+ oε(1) +O(R).

By (4.50) ∣∣∣∣∣∣
N∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)
+ ε(Kρ + J0)− η(t0, x

0
N)

∣∣∣∣∣∣ 6 oε(1) +
Cε2δNε

R
.

By using that 0 < φ < 1 and that {xN+1, . . . , xNε} ⊂ (xNε−2R, xNε) so that |{xN+1, . . . , xNε}| 6
CR/ε, we have ∣∣∣∣∣

Nε∑
i=N+1

εφ

(
x− x0i
εδ

, bi

)∣∣∣∣∣ 6 O(R).

This concludes the proof of Claim 3.
The lemma for |x − x0| > ρ + 4R follows as a consequence of Claims 1-3, Lemma 9.1

and (6.21).
Finally, let us consider the case ρ − R 6 |x − x0| 6 ρ + 4R. Assume without loss of

generality that ρ−R 6 x− x0 6 ρ+ 4R. We will divide the proof into three claims.

Claim 4:
∣∣∣∑Mρ

i=1 εφ
(
x−x0i
εδ

, bi

)
− J0ε

∣∣∣ 6 oε(1) +
Cε2δNε

R
.

Proof of Claim 4. By (6.25) and x0 + ρ−R < x, we have that x > x0Mρ
+R. Therefore,

using (4.50), the claim immediately follows.

Claim 5:
∣∣∣∑Nε

i=Nρ+1 εφ
(
x−x0i
εδ

, bi

)∣∣∣ 6 oε(1) +
Cε2δNε

R
+O(R).

Proof of Claim 5. Define an index N1 such that

x0 + ρ+ 5R 6 x0N1
< x0Nρ + 6R,

so that x < x0+ρ+4R 6 x0N1
−R. By using (4.51), 0 < φ < 1 and |{xNρ+1, . . . , xN1−1}| 6

CR/ε, we obtain∣∣∣∣∣∣
Nε∑

i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)∣∣∣∣∣∣ 6
∣∣∣∣∣∣
N1−1∑
i=Nρ+1

εφ

(
x− x0i
εδ

, bi

)∣∣∣∣∣∣+

∣∣∣∣∣
Nε∑
i=N1

εφ

(
x− x0i
εδ

, bi

)∣∣∣∣∣
= O(R) + oε(1) +

Cε2δNε

R
.

This completes the proof of Claim 5.
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Claim 6:
∣∣∣∑Kρ

i=0 εφ
(
x−ζi(t)
εδ

, 1
)

+ J0ε− η(t, x)
∣∣∣ 6 O(R).

Proof of Claim 6. By Lemma 6.3, |x− ζ0(t)|, |x− ζKρ(t)|=O(R). Then, by using that
0 < φ < 1, η(t, ζ0(t)) = εJ0 and η(t, ζKρ(t)) = ε(J0 +Kρ), we get

Kρ∑
i=0

εφ

(
x− ζ i(t)

εδ
, 1

)
+ J0ε− η(t, x) 6 ε(J0 +Kρ + 1)− η(t, x)

= η(t, ζKρ(t))− η(t, x) + ε

= O(R),

and

Kρ∑
i=0

εφ

(
x− ζ i(t)

εδ
, 1

)
+ J0ε− η(t, x) > J0ε− η(t, x) = η(t, ζ0(t))− η(t, x) = O(R),

which proves the claim.
The lemma for ρ − R 6 |x − x0| 6 ρ + 4R follows from Claims 4-6, Lemma 9.1 and

(6.21).

9.3. Proof of Lemma 6.1. Recalling that if x0i < x0 then bi = −1, while if x0i > x0 then
bi = 1, we write

Nε∑
i=1

εφ

(
xε + bic0L(tε − t0 + cσ)− x0i

εδ
, bi

)

=
Nε∑
i=1

x0i>x0

εφ

(
xε + c0L(tε − t0 + cσ)− x0i

εδ
, 1

)

+
Nε∑
i=1

x0i<x0

εφ

(
xε − c0L(tε − t0 + cσ)− x0i

εδ
,−1

)
.

(9.2)

Let us show that

(9.3)
Nε∑
i=1

x0i<x0

εφ

(
xε ± c0L(tε − t0 + cσ)− x0i

εδ
,−1

)
= oε(1)− εN−ε ,

where N−ε is the number of negative oriented particles. By (6.10),

(9.4) xε ± c0L(tε − t0 + cσ) = x0 ± c0Lcσ + oε(1) = x0 ±
σ

4
+ oε(1).

Since η̃σ is constant in x for |x− x0| 6 σ, if x0i < x0 then

x0 − x0i > σ,

which combined with (9.4) gives

xε ± c0L(tε − t0 + cσ)− x0i >
σ

2
.
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Therefore by (2.16),

Nε∑
i=1

x0i<x0

εφ

(
xε ± c0L(tε − t0 + cσ)− x0i

εδ
,−1

)

6
Nε∑
i=1

x0i<x0

ε2δC

σ
− εN−ε

= oε(1)− εN−ε ,
where we used that εNε 6 C. Similarly, one can show that

Nε∑
i=1

x0i<x0

εφ

(
xε ± c0L(tε − t0 + cσ)− x0i

εδ
,−1

)
> oε(1)− εN−ε .

This concludes the proof of (9.3). From (9.3) in particular we infer that

Nε∑
i=1

x0i<x0

εφ

(
xε − c0L(tε − t0 + cσ)− x0i

εδ
,−1

)

=
Nε∑
i=1

x0i<x0

εφ

(
xε + c0L(tε − t0 + cσ)− x0i )

εδ
,−1

)
+ oε(1),

which combined with (9.2) yields (6.17).
This concludes the proof of the lemma.
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