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Abstract. This paper is concerned with a result of homogenization of an integro-
differential equation describing dislocation dynamics. Our model involves both an anisotropic
Lévy operator of order 1 and a potential depending periodically on u/ε. The limit equa-
tion is a non-local Hamilton-Jacobi equation, which is an effective plastic law for densities
of dislocations moving in a single slip plane.

1. Introduction

In this paper we are interested in homogenization of the Peierls-Nabarro model, which
is a phase field model describing dislocations. In this model a dislocation is described by
a phase transition. Dislocations are moving defects in crystals that can be described at
several scales by different models:

• atomic scale (Frenkel-Kontorova model),
• microscopic scale (Peierls-Nabarro model),
• mesoscopic scale (Discrete dislocation dynamics),
• macroscopic scale (elasto-visco-plasticity with density of dislocations).

Several changes of scales already exist in the literature: see for instance [12] for a pre-
sentation of rigorous passages from atomic scale to microscopic scale, from microscopic
scale to mesoscopic scale and from mescoscopic scale to macroscopic scale. Notice that
the passage from Peierls-Nabarro model to the Discrete dislocation dynamics is only done
in dimension 1 (see [12] and [19]). On the contrary in higher dimensions, the large scale
limit of a single phase transition described by the Peierls-Nabarro model shows that the
line tension effect is the much stronger term. The limit model appears to be the mean
curvature motion (see [25]).

Our goal in this paper is to understand the large scale limit of the Peierls-Nabarro model
in the case of a large number of phase transitions (i.e. of dislocations), recovering at the
limit a model with evolution of dislocation densities. In other words, we want to perform
a direct passage in any dimensions from the microscopic scale (Peierls-Nabarro model)
to the macroscopic scale (elasto-visco-plasticity with density of dislocations). In physics
and mechanics, it is a great challenge to try to predict macroscopic elasto-visco-plasticity
properties of materials (like metals), based on microscopic properties like dislocations.
In our work, we try to tackle this question in a very simplified geometry where all the
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dislocations are contained in the same slip plane with the same Burgers vector. For a
physical introduction to the Peierls-Nabarro model, see for instance [20]; for a recent
reference, see [38]; we also refer the reader to the paper of Nabarro [35] which presents
an historical tour on the Peierls-Nabarro model. See also Section 2 for a more physical
presentation of the Peierls-Nabarro model and an interpretation of our results.

1.1. Setting of the problem. The Peierls-Nabarro model has been originally introduced
as a variational (stationary) model (see [35]). The time evolution Peierls-Nabarro model
as a gradient flow dynamics has only been introduced quite recently, see for instance [33]
and [10]. In the present paper we consider such a time evolution Peierls-Nabarro model
that can be written at the microscopic scale for the parameter ε = 1 as the following
equation

(1.1)

{
∂tu

ε = I1[uε(t, ·)]−W ′ (uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN .

For the physical application that we have in mind, we consider a three-dimensional crystal
which contains a crystallographic plane RN with N = 2. This plane contains the dislo-
cations that are represented by transitions of the phase function uε. Here uε solves the
non local (and non linear) heat equation (1.1). Indeed I1 stands here for an anisotropic
half Laplacian (whose expression will be precised below). Here the anisotropy comes both
from the possible anisotropy of the elasticity of the crystal and from the fact that the
Burgers vector is assumed to be contained in the slip plane RN which creates a preferable
direction. The dynamics is assumed to be fully overdamped and then the right hand
side of the equation is the sum of three force terms: I1[uε] is the elastic stress created
by the dislocation themselves, −W ′ is the force deriving from the potential W describing
the misfit between the two half crystals separated by the plane RN , and σ is a stress
created by the obstacles in the crystal or/and an applied exterior stress. For simplicity
σ is assumed to be periodic in order to analyse by homogenization the effect on the dy-
namics of periodic obstacles everywhere in the crystal. We consider time periodicity for
two reasons: one in order to take into account exterior periodic loads, and the second
for generality. Indeed, if σ(t/ε, x/ε) is replaced by an oscillation at a different scale like
σ(t/εγ, x/εγ) with γ 6= 1, then we expect (but it is not proven) that there is a two-scales
homogenization effect. If γ > 1, then we expect that there is first homogenization of σ,
where only its mean value will be taken into account at the microscopic scale, and in
a second step, we get the macroscopic model by homogenization of the Peierls-Nabarro
model with constant σ. If γ < 1, we expect first to freeze σ and get the macroscopic
model by homogenization of the Peierls-Nabarro model for constant σ, and in a second
step we remind us that σ is slowly oscillating, and there is a second homogenization of
the macroscopic model.

Here ε describes the ratio between the microscopic scale and the macroscopic scale,
and then is a small parameter. After a suitable rescaling at the macroscopic scale, the
Peierls-Nabarro model becomes (1.1). In this paper we investigate the limit as ε → 0 of
the viscosity solution uε of (1.1).

We give the precise definitions and assumptions on the terms involved in (1.1). Here
I1 is an anisotropic Lévy operator of order 1, defined on bounded C2- functions for r > 0
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by

I1[U ](x) =

∫
|z|≤r

(U(x+ z)− U(x)−∇U(x) · z)
1

|z|N+1
g

(
z

|z|

)
dz

+

∫
|z|>r

(U(x+ z)− U(x))
1

|z|N+1
g

(
z

|z|

)
dz,

(1.2)

where the function g satisfies

(H1) g ∈ C(SN−1), g > 0, g even.

On the functions W , σ and u0 we assume:

(H2) W ∈ C1,1(R) and W (v + 1) = W (v) for any v ∈ R;
(H3) σ ∈ C0,1(R+ × RN) and σ(t+ 1, x) = σ(t, x), σ(t, x+ k) = σ(t, x) for any k ∈ ZN

and (t, x) ∈ R+ × RN ;
(H4) u0 ∈ W 2,∞(RN).

When g ≡ CN , with CN a suitable constant depending on the dimension N , then (1.2)

is the integral representation of −(−∆)
1
2 for bounded real smooth functions defined on

RN (see Theorem 1 in [11]). We recall that (−∆)
1
2 is the fractional operator defined for

instance on the Schwartz class S(RN) by

(1.3)
̂

(−∆)
1
2v (ξ) = |ξ| v̂(ξ),

where ŵ is the Fourier transform of w.
We prove that the limit u0 of uε as ε → 0 exists and is the unique solution of the

homogenized problem

(1.4)

{
∂tu = H(∇xu, I1[u(t, ·)]) in R+ × RN

u(0, x) = u0(x) on RN ,

for some continuous function H usually called effective Hamiltonian. The function u0

will be interpreted later as a macroscopic plastic strain satisfying the macroscopic plastic
flow rule (1.4). Moreover I1[u0] will be the stress created by the macroscopic density of
dislocations.

1.2. Main results. As usual in periodic homogenization, the limit equation is determined
by a cell problem. In our case, such a problem is for any p ∈ RN and L ∈ R the following:

(1.5)

{
λ+ ∂τv = I1[v(τ, ·)] + L−W ′(v + λτ + p · y) + σ(τ, y) in R+ × RN

v(0, y) = 0 on RN ,

where λ = λ(p, L) is the unique number for which there exists a solution v of (1.5) which
is bounded on R+ × RN . In order to solve (1.5), we show for any p ∈ RN and L ∈ R the
existence of a unique solution of

(1.6)

{
∂τw = I1[w(τ, ·)] + L−W ′(w + p · y) + σ(τ, y) in R+ × RN

w(0, y) = 0 on RN ,

and we look for some λ ∈ R for which w − λτ is bounded. Precisely we have:
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Theorem 1.1 (Ergodicity). Assume (H1)-(H4). For L ∈ R and p ∈ RN , there exists
a unique viscosity solution w ∈ Cb(R+ × RN) of (1.6) and there exists a unique λ ∈ R
such that w satisfies: w(τ,y)

τ
converges towards λ as τ → +∞, locally uniformly in y. The

real number λ is denoted by H(p, L). The function H(p, L) is continuous on RN ×R and
non-decreasing in L.

Unfortunately, we cannot directly use the bounded solution of (1.5), usually called
corrector, in order to prove the convergence of the sequence uε to the solution of (1.4).
Nevertheless we have the following result:

Theorem 1.2 (Convergence). Assume (H1)-(H4). The solution uε of (1.1) converges
towards the solution u0 of (1.4) locally uniformly in (t, x), where H is defined in Theorem
1.1.

Let us mention that in a companion paper [32], we show that we can recover Orowan’s
law in dimension N = 1 for σ = 0, i.e.

H(δp, δL) ' c0δ
2|p|L as δ → 0

i.e. the plastic strain velocity is asymptotically proportional to the product of dislocation
density |p| by the effective stress L.

1.3. Brief review of the literature. This non-local equation (1.1) is related to the
local equation

(1.7)

{
∂tu

ε = F
(
x
ε
, u

ε

ε
,∇uε

)
in R+ × RN

uε(0, x) = u0(x) on RN ,

that was studied in [23] under the assumption that F (x, u, p) is periodic in (x, u) and
coercive in p. The homogenization problem (1.7) when F does not depend on u, has
been completely solved by Lions Papanicolaou and Varadhan [31]. After this seminal
paper, homogenization of Hamilton-Jacobi equations for coercive Hamiltonians has been
treated for a wider class of periodic situations, c.f. Ishii [27], for problems set on bounded
domains, c.f. Alvarez [1], Horie and Ishii [21], for equations with different structures,
c.f. Alvarez and Ishii [4], for deterministic control problems in L∞, c.f. Alvarez and
Barron [2], for almost periodic Hamiltonians, c.f. Ishii [26], and for Hamiltonians with
stochastic dependence, c.f. Souganidis [37]. More recently, inspired by [23], Barles [6] gave
an homogenization result for non-coercive Hamiltonians and, as a by-product, obtained a
simpler proof of the results [23] of Imbert and Monneau but under slightly more restrictive
assumptions on the Hamiltonians. We can also mention the work of Imbert, Monneau
and Rouy [24] where the authors studied homogenization of certain integro-differential
equations depending explicitly on uε/ε. Notice that in the present paper, the operator I1
involves a singular kernel which creates some additional difficulties that were not present
for instance in [24].

Notice also that the model studied in [24] was introduced to approximate a level set
model like in [14]. The phase field model in [24] was therefore closer in the spirit to a
model for discrete dislocation dynamics at the mesoscopic scale. On the contrary, the
Peierls-Nabarro model (1.1) is a well-established physical model which is really devoted
to the description of dislocations at the microscopic scale.
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1.4. Organization of the paper. The paper is organized as follows. In Section 2, we
give more details about the Peierls-Nabarro model yielding to the study of (1.1) and the
mechanical interpretation of the homogenization results. In Section 3 we present briefly
the strategies of the main proofs. In Section 4, we state various comparison principles,
existence and regularity results for solutions of non-local Hamilton-Jacobi equations. In
Section 5, we prove the convergence result (Theorem 1.2) by assuming the existence of
smooth approximate sub and supercorrectors (Proposition 3.1). In order to show their
existence, in Section 6, we first construct Lipschitz continuous sub and supercorrectors
(Proposition 6.1). As a byproduct, we prove the ergodicity of the problem (Theorem 1.1)
and some properties of the effective Hamiltonian (Proposition 5.4). Proposition 3.1 is
then proved in Section 7. The proofs of Lemma 4.7 and of Proposition 6.2 are done in
the Appendix (Section 8).

1.5. Notations. We denote by Br(x) the ball of radius r centered at x. The cylinder
(t− τ, t+ τ)×Br(x) is denoted by Qτ,r(t, x).
bxc and dxe denote respectively the floor and the ceil integer parts of a real number x.
It is convenient to introduce the singular measure defined on RN \ {0} by

µ(dz) =
1

|z|N+1
g

(
z

|z|

)
dz = µ0(z)dz,

and to denote

I1,r1 [U, x] =

∫
|z|≤r

(U(x+ z)− U(x)−∇U(x) · z)µ(dz),

I2,r1 [U, x] =

∫
|z|>r

(U(x+ z)− U(x))µ(dz).

Sometimes when r = 1 we will omit r and we will write simply I11 and I21 .
For a function u defined on (0, T ) × RN , 0 < T ≤ +∞, for 0 < α < 1 we denote by

< u >α
x the seminorm defined by

< u >α
x := sup

(t,x), (t,x′)∈(0,T )×RN
x6=x′

|u(t, x)− u(t, x′)|
|x− x′|α

and by Cα
x ((0, T )×RN) the space of continuous functions defined on (0, T )×RN that are

bounded and with bounded seminorm < u >α
x .

Finally, we denote by USCb(R+×RN) (resp., LSCb(R+×RN)) the set of upper (resp.,
lower) semicontinuous functions on R+ × RN which are bounded on (0, T )× RN for any
T > 0 and we set Cb(R+ × RN) := USCb(R+ × RN) ∩ LSCb(R+ × RN).

2. Physical modeling and mechanical interpretation of the
homogenization results

2.1. The Peierls-Nabarro model. Dislocations are line defects in crystals. Their typ-
ical length is of the order of 10−6m and their thickness of order of 10−9m. When the
material is submitted to shear stress, these lines can move in the crystallographic planes
and their dynamics is one of the main explanation of the plastic behavior of metals.

The Peierls-Nabarro model is a phase field model for dislocation dynamics incorporating
atomic features into continuum framework. In a phase field approach, the dislocations
are represented by transition of a continuous field.
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We briefly review the model (see [20] for a detailed presentation). As an example,
consider an edge dislocation in a crystal with simple cubic lattice. In a Cartesian system of
coordinates x1x2x3, we assume that the dislocation is located in the slip plane x1x2 (where
the dislocation can move) and that the Burgers’ vector (i.e. a fixed vector associated to
the dislocation) is in the direction of the x1 axis. We write this Burgers’ vector as be1
for a real b. The disregistry of the upper half crystal {x3 > 0} relative to the lower half
{x3 < 0} in the direction of the Burgers’ vector is φ(x1, x2), where φ is a phase parameter
between 0 and b. Then the dislocation loop can be for instance localized by the level set
φ = b/2. For a closed loop, we expect to have φ ' b inside the loop and φ ' 0 far outside
the loop.

In the Peierls-Nabarro model, the total energy is given by

(2.1) E = Eel + Emis.

In (2.1), Emis is the so called misfit energy due to the nonlinear atomic interaction
across the slip plane

Emis(φ) =

∫
R2

W (φ(x)) dx with x = (x1, x2),

where W (φ) is the interplanar potential. In the classical Peierls-Nabarro model [36, 34],
W (φ) is approximated by the sinusoidal potential

W (φ) =
µb2

4π2d

(
1− cos

(
2πφ

b

))
,

where d is the lattice spacing perpendicular to the slip plane.

The elastic energy Eel induced by the dislocation is (for X = (x, x3) with x = (x1, x2))

Eel(φ, U) =
1

2

∫
R3

e : Λ : e dX with e = e(U)−φ(x)δ0(x3)e
0 and

 e(U) = 1
2

(
∇U + (∇U)T

)
e0 = 1

2
(e1 ⊗ e3 + e3 ⊗ e1)

,

where U : R3 → R3 is the displacement and Λ = {Λijkl} are the elastic coefficients.
Given the field φ, we minimize the energy Eel(φ, U) with respect to the displacement U
and define

Eel(φ) = inf
U
Eel(φ, U)

Following the proof of Proposition 6.1 (iii) in [3], we can see that (at least formally)

Eel(φ) = −1

2

∫
R2

(c0 ? φ)φ

where c0 is a certain kernel. In the case of isotropic elasticity, we have

Λijkl = λδijδkl + µ (δikδjl + δilδjk)

where λ, µ are the Lamé coefficients. Then the kernel c0 can be written (see Proposition
6.2 in [3], translated in our framework):

c0(x) =
µ

4π

(
∂22

1

|x|
+ γ∂11

1

|x|

)
with γ =

1

1− ν
and ν =

λ

2(λ+ µ)

where ν ∈ (−1, 1/2) is called the Poisson ratio.
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The equilibrium configuration of straight dislocations is obtained by minimizing the
total energy with respect to φ, under the constraint that far from the dislocation core,
the function φ tends to 0 in one half plane and to b in the other half plane. In particular,
the phase transition φ is then solution of the following equation

(2.2) I1[φ] = W ′(φ) on R2,

where formally I1[φ] = c0 ? φ, which is the anisotropic Lévy operator defined in (1.2) for
N = 2 and g(z1, z2) = µ

4π
((2γ − 1)z21 + (2− γ)z22). Let us now recall the expression of the

kernel after a Fourier transform (see paragraph 6.2.2.2 in [3])

ĉ0(ξ) = − µ

2|ξ|
(
ξ22 + γξ21

)
Then for γ = 1 and µ = 2, we see that I1 = −(−∆)

1
2 . In that special case, we recall that

the solution φ of (2.2) satisfies φ(x) = φ̃(x, 0) where φ̃(X) is the solution of (see [30, 19])
∆φ̃ = 0 in {x3 > 0}

∂φ̃

∂x3
= W ′(φ̃) on {x3 = 0}

Moreover, we have in particular an explicit solution for b = 1, d = 2 (with W ′(φ̃) =
1
2π

sin(2πφ̃))

φ̃(X) =
1

2
+

1

π
arctan

(
x1

x3 + 1

)
Then by rescaling, it is easy to check that we can recover the explicit solution found in

Nabarro [34] 
φ(x) =

b

2
+
b

π
arctan

(
2(1− ν)x1

d

)
(edge dislocation)

φ(x) =
b

2
+
b

π
arctan

(
2x2
d

)
(screw dislocation)

In a more general model, one can consider a potential W satisfying

(i) W (v + b) = W (u) for all v ∈ R;
(ii) W (bZ) = 0 < W (a) for all a ∈ R \ bZ.

The periodicity of W reflects the periodicity of the crystal, while the minimum property
is consistent with the fact that the perfect crystal is assumed to minimize the energy.

In the face cubic structured (FCC) observed in many metals and alloys, dislocations
move at low temperature on the slip plane. In the present paper we are interested in
describing the effective dynamics for a collection of dislocations curves with the same
Burgers’ vector and all contained in a single slip plane x1x2, and moving in a landscape
with periodic obstacles (that can be for instance precipitates in the material). These
dislocations are represented by a single phase parameter u(t, x1, x2) defined on the slip
plane x1x2. The dynamic of dislocations is then described by the evolutive version of the
Peierls-Nabarro model (see for instance [33] and [10]):

(2.3) ∂tu = I1[u(t, ·)]−W ′ (u) + σobst
13 (t, x) in R+ × RN
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for x ∈ RN with the physical dimension N = 2. In the model, the component σobst
13 of the

stress (evaluated on the slip plane) has been introduced to take into account the shear
stress not created by the dislocations themselves. This shear stress is created by the
presence of the periodic obstacles and the possible external applied stress on the material.

We want to identify at large scale an evolution model for the dynamics of a density of
dislocations. We consider the following rescaling

uε(t, x) = εu

(
t

ε
,
x

ε

)
,

where ε is the ratio between the typical length scale for dislocation (of the order of
the micrometer) and the typical macroscopic length scale in mechanics (milimeter or
centimeter). With such a rescaling, we see that the number of dislocations is typically of
the order of 1/ε per unit of macroscopic scale. Moreover, assuming suitable initial data

(2.4) u(0, x) =
1

ε
u0(εx) on RN ,

(where u0 is a regular bounded function), we see that the functions uε are solutions of
(1.1). This indicates that at the limit ε→ 0, we will recover a model for the dynamics of
(renormalized) densities of dislocations.

Remark 2.1. Fractional reaction-diffusion equations of the form

(2.5) ∂tu = I1[u] + f(u) in R+ × RN

where N ≥ 2 and f is a bistable nonlinearity have been studied by Imbert and Souganidis
[25]. In this paper the authors show that solutions of (2.5), after properly rescaling them,
exhibit the limit evolution of an interface by (anisotropic) mean curvature motion.

Other results have been obtained by González and Monneau [19] for a rescaling of the
evolutive Peierls-Nabarro model in dimension N = 1. In the one dimensional space, the
limit moving interfaces are points particles interacting with forces as 1/x. The dynamics of
these particles corresponds to the classical discrete dislocation dynamics, in the particular
case of parallel straight edge dislocation lines in the same slip plane with the same Burgers’
vector. In [14], considering another rescaling of the model of particles obtained in [19],
the authors identify at large scale an evolution model for the dynamics of a density
of dislocations, that is analoguous to (1.4). In the present paper, we directly deduce
the model (1.4) at larger scale from the Peierls-Nabarro model at smaller scale in any
dimension N ≥ 1. That way we remove the limitation to the dimension N = 1 that
appears in [19].

Finally, let us mention that in [17] and [18] Garroni and Muller study a variational
model for dislocations that is the variational formulation of the stationary Peierls-Nabarro
equation, where they derive a line tension model.

2.2. Mechanical interpretation of the homogenization. Let us briefly explain the
meaning of the homogenization result. In the macroscopic model, the function u0(t, x)
can be interpreted as the plastic strain (localized in the slip plane {x3 = 0}). Then the
three-dimensional displacement U(t,X) is obtained as a minimizer of the elastic energy

U(t, ·) = arg min
Ũ
Eel(u0(t, ·), Ũ)

and the stress is
σ = Λ : e with e = e(U)− u0(t, x)δ0(x3)e

0
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Then the resolved shear stress is

I1[u0] = σobst
13

The homogenized equation (1.4), i.e.

∂tu
0 = H(∇xu

0, I1[u0(t, ·)])
which is the evolution equation for u0, can be interpreted as the plastic flow rule in a
model for macroscopic crystal plasticity. This is the law giving the plastic strain velocity
∂tu

0 as a function of the resolved shear stress σobst
13 and the dislocation density ∇u0.

The typical example of such a plastic flow rule is the Orowan’s law:

H(p, L) ' |p|L
This is also the law that we recover in dimension N = 1 in a forthcoming paper [32] in the
case where there are no obstacles (i.e. σobst

13 ≡ 0) and for small stress L and small density
|p|. When σobst

13 6≡ 0 with zero mean value (i.e. < σobst
13 >= 0), we expect a threshold

phenomenon as in [24] (see also Norton’s law with threshold in [16]), i.e.

H(p, L) = 0 if |L| is small enough.

This means more generally that our homogenization procedure describes correctly the me-
chanical behaviour of the stress at large scales, but keeps the memory of the microstructure
in the plastic law with possible threshold effects.

3. Strategies of the main proofs

3.1. Strategy for the proof of convergence.

3.1.1. The general approach. It has been already noticed that for problems periodic in
uε/ε, we have to introduce twisted correctors (see for instance [23]). It is also known that
if we can claim that the limit function satisfies

(3.1) ∂tu
0 6= 0 or ∇xu

0 6= 0

then we do not have to introduce an additional dimension to perform the proof of conver-
gence. The idea (see [23]) is that we can twist the corrector either dividing by pi := ∂xiu

0

for some index i, or by λ := ∂tu
0 like considering the ansatz:

uε(t, x) ' u0(t, x) + εv

(
u0(t, x)− p · x

ελ
,
x

ε

)
.

On the contrary, we do not know how to deal with the case where both quantities in (3.1)
vanish, except adding a dimension and considering twisted correctors in higher dimension.
Here we have to face a similar difficulty in the much more involved framework of non-local
equations. Notice also that it does not seem possible to apply the approach of Barles [6].
Therefore following the idea in [23], we consider the solution U ε of

(3.2)

{
∂tU

ε = I1[U ε(t, ·, xN+1)]−W ′ (Uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN+1

U ε(0, x, xN+1) = u0(x) + pN+1xN+1 on RN+1,

where pN+1 6= 0. We then consider the following ansatz:

U ε(t, x, xN+1) ' U0(t, x, xN+1) + εV

(
t

ε
,
x

ε
,
U0(t, x, xN+1)− λt− p · x

εpN+1

)
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where U0(t, x, xN+1) = u0(t, x) + pN+1xN+1. This ansatz turns out to be the good one,
and plugging this expression of U ε into (3.2), we find formally with τ = t

ε
, y = x

ε
, yN+1 =

U0(t,x,xN+1)−λt−p·x
pN+1ε

:

(3.3) λ+ ∂τV = L+ I1[V (τ, ·, yN+1)]−W ′(V + p · y + pN+1yN+1 + λτ) + σ(τ, y),

where

λ = ∂tU
0(t, x, xN+1) = ∂tu

0(t, x), p = ∇xU
0(t, x, xN+1) = ∇xu

0(t, x)

and
L = I1[U0(t, ·, xN+1)] = I1[u0(t, ·)].

Then, we expect u0 to be solution of (1.4) with H̄(p, L) = λ(p, L). This heuristic com-
putation, that permits first of all to identify the cell problem in the higher dimensional
space, can be made rigorous through the perturbed test function method by Evans [13].

3.1.2. Additional difficulty.
Let us enter a bit more in the details of the proof. Fix P0 = (t0, x0, x

0
N+1) ∈ R+×RN+1

and define

(3.4) Ũ ε(t, x, xN+1) = U0(t, x, xN+1) + εV

(
t

ε
,
x

ε
,
U0(t, x, xN+1)− λt− p · x

εpN+1

)
,

where V is solution of (3.3) with λ = ∂tU
0(P0), p = ∇xU

0(P0) and L = I1[U0(t0, ·, x0N+1), x0].

Let us call F (t, x, xN+1) = U0(t,x,xN+1)−λt−p·x
pN+1

. Here we assume for simplicity that U0 and

V are smooth. The proof of convergence consists in showing that Ũ ε is a solution of (3.2)
in a cylinder (t0−r, t0 +r)×Br(x0, x

0
N+1) for r > 0 small enough, up to an error that goes

to 0 as r → 0+. This will allow us to compare U ε with Ũ ε and, thanks to the boundedness
of V , to conclude that U ε converges to U0 as ε→ 0.

When we plug Ũ ε into (3.2), we find the equation

λ+ ∂τV = L+ I1[V (τ, ·, yN+1)]−W ′(V + p · y + pN+1yN+1 + λτ) + σ(τ, y) + or(1) + θr,

with τ = t
ε
, y = x

ε
, yN+1 = F (t,x,xN+1)

ε
, where

θr = (∂tU
0(P0)− ∂tU0(t, x, xN+1))∂yN+1

V (τ, y, yN+1)

+ I1
[
V

(
τ, ·, F (ετ, ε·, εyN+1)

ε

)]
− I1[V (τ, ·, yN+1)].

Then, Ũ ε will be a solution of (3.2) up to a small error if θr = or(1) as r → 0+. This
last property holds true if the corrector V satisfies: |V |, |∂yN+1

V | ≤ C in R+ × RN+1 for
some C > 0, and

(3.5) ∂yN+1
V (τ, ·, ·) is Hölder continuous, uniformly in time.

In the case of the local first order equation (1.7) considered in [23], or non local equations
considered in [24], approximate correctors were only required to be Lipschitz continuous
in the additional variable. Here the additional regularity (3.5) is required because we deal
with an operator I1 whose kernel is singular.

Since in (3.3), the quantity I1[V (τ, ·, yN+1)] is computed only in the y variable, we
cannot expect this kind of regularity for the correctors. Nevertheless, we are able to
construct regular approximated sub and supercorrectors, i.e., sub and supersolutions of
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approximate N+1-dimensional cell problems, and this is enough to conclude. Finally, this
construction works for any pN+1 6= 0 and to simplify the presentation we take pN+1 = 1.

3.2. Strategy for the construction of smooth approximate correctors. As ex-
plained in the previous subsection, in the proof of convergence we will need smooth
approximate sub and and super-correctors on R+×RN+1, i.e., for P = (p, 1) ∈ RN+1 and
L ∈ R, sub and supersolutions of
(3.6){

λ+ ∂τV = L+ I1[V (τ, ·, yN+1)]−W ′(V + P · Y + λτ) + σ(τ, y) in R+ × RN+1

V (0, Y ) = 0 on RN+1.

Here and in what follows, we denote Y = (y, yN+1). More precisely, we will prove the
following proposition.

Proposition 3.1 (Smooth approximate correctors). Let λ be the constant defined by
Theorem 1.1. For any fixed p ∈ RN , P = (p, 1), L ∈ R and η > 0 small enough, there
exist real numbers λ+η (p, L), λ−η (p, L), a constant C > 0 (independent of η, p and L) and
bounded super and subcorrectors V +

η , V
−
η , i.e. respectively a super and a subsolution of

(3.7)


λ±η + ∂τV

±
η = L+ I1[V ±η (τ, ·, yN+1)]

−W ′(V ±η + P · Y + λ±η τ) + σ(τ, y)∓oη(1) in R+ × RN+1

V ±η (0, Y ) = 0 on RN+1,

where 0 ≤ oη(1)→ 0 as η → 0+, such that

(3.8) lim
η→0+

λ+η (p, L) = lim
η→0+

λ−η (p, L) = λ(p, L),

locally uniformly in (p, L), λ±η satisfy (i) and (ii) of Proposition 5.4 and for any (τ, Y ) ∈
R+ × RN+1

(3.9) |V ±η (τ, Y )| ≤ C.

Moreover V ±η are of class C2 w.r.t. yN+1, and for any 0 < α < 1

(3.10) −1 ≤ ∂yN+1
V ±η ≤

‖W ′′‖∞
η

,

(3.11) ‖∂2yN+1yN+1
V ±η ‖∞ ≤ Cη, < ∂yN+1

V ±η >α
y , ≤ Cη,α.

Here in order to build Lipschitz sub/super correctors, it does not seem easy to apply
a kind of truncation of the Hamiltonian like in [23] or [24]. Therefore we use a different
method to build such approximate correctors (similar to the one in [15]).

The proof of Proposition 3.1 is mainly performed in two steps:
Step 1: Constructions of Lipschitz correctors.
Using the modified Cauchy problem

∂τU = L+ I1[U(τ, ·, yN+1)]−W ′(U + P · Y ) + σ(τ, y)

+η
{
a0 + inf

Y ′
U(τ, Y ′)− U(τ, Y )

}
|∂yN+1

U + 1| in R+ × RN+1

U(0, Y ) = 0 on RN+1
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we construct Lipschitz correctors. The Lipschitz bound comes formally from the equation
satisfied by w = ∂yN+1

U :

∂τw = I1[w(τ, ·, yN+1)]−W ′′(U + P · Y )(w + 1)− ηw(τ, Y )|w + 1|

+η
{
a0 + inf

Y ′
U(τ, Y ′)− U(τ, Y )

}
sign(∂yN+1

U + 1)∂yN+1
w in R+ × RN+1

w(0, Y ) = 0 on RN+1

and the comparison principle implies that

(3.12) −1 ≤ w ≤ |W
′′|∞
η

On the other hand we are able to show (as in [24]) that infY ′ U(τ, Y ′)− U(τ, Y ) remains
bounded independently on η. Then an appropriate choice of a0 large enough (resp. neg-
ative enough) provides us bounded supercorrectors W+

η (resp. subcorrectors W−
η ). We

also show using Proposition 4.7 and the bound (3.12) that we have the following Hölder
estimate:

< W±
η >α

y ≤ Cα
Step 2: Constructions of smooth correctors.
We make a convolution with respect to yN+1 of the Lipschitz correctors built in Step 1,
with a sequence (ρδ)δ of mollifiers:

V ±η,δ(t, y, yN+1) := W±
η (t, y, ·) ? ρδ(·).

Those functions are finally the smooth approximate sub/super correctors of Proposition
3.1 with some small error term oη(1) on the right hand side of the equation, for a suitable
choice δ = δ(η).

4. Results about viscosity solutions for non-local equations

The classical notion of viscosity solution can be adapted for Hamilton-Jacobi equations
involving non-local operators, see for instance [5]. In this section we state comparison
principles, existence and regularity results for viscosity solutions of (1.1) and (1.4), that
will be used later in the proofs.

4.1. Definition of viscosity solution. We first recall the definition of viscosity solution
for a general first order non-local equation with associated initial condition:

(4.1)

{
ut = F (t, x, u,Du, I1[u]) in R+ × RN

u(0, x) = u0(x) on RN ,

where F (t, x, u, p, L) is continuous and non-decreasing in L.

Definition 4.1 (r-viscosity solution). A function u ∈ USCb(R+ × RN) (resp., u ∈
LSCb(R+ × RN)) is a r-viscosity subsolution (resp., supersolution) of (4.1) if u(0, x) ≤
(u0)

∗(x) (resp., u(0, x) ≥ (u0)∗(x)) and for any (t0, x0) ∈ R+ × RN , any τ ∈ (0, t0) and
any test function φ ∈ C2(R+ × RN) such that u − φ attains a local maximum (resp.,
minimum) at the point (t0, x0) on Q(τ,r)(t0, x0), then we have

∂tφ(t0, x0)− F (t0, x0, u(t0, x0),∇xφ(t0, x0), I1,r1 [φ(t0, ·), x0] + I2,r1 [u(t0, ·), x0]) ≤ 0

(resp., ≥ 0).
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A function u ∈ Cb(R+×RN) is a r-viscosity solution of (4.1) if it is a r-viscosity sub and
supersolution of (4.1).

It is classical that the maximum in the above definition can be supposed to be global
and this will be used later. We have also the following property, see e.g. [5]:

Proposition 4.1 (Equivalence of the definitions). Assume F (t, x, u, p, L) continuous and
non-decreasing in L. Let r > 0 and r′ > 0. A function u ∈ USCb(R+ × RN) (resp.,
u ∈ LSCb(R+ × RN)) is a r-viscosity subsolution (resp., supersolution) of (4.1) if and
only if it is a r′-viscosity subsolution (resp., supersolution) of (4.1).

Because of this proposition, if we do not need to emphasize r, we will omit it when
calling viscosity sub and supersolutions.

4.2. Comparison principle and existence results. In this subsection, we successively
give comparison principles and existence results for (1.1) and (1.4). The following com-
parison theorem is shown in [29] for more general parabolic integro-PDEs.

Proposition 4.2 (Comparison Principle for (1.1)). Consider u ∈ USCb(R+ × RN) sub-
solution and v ∈ LSCb(R+ × RN) supersolution of (1.1), then u ≤ v on R+ × RN .

Following [29] it can also be proved the comparison principle for (1.1) in bounded
domains. Since we deal with a non-local equation, we need to compare the sub and the
supersolution everywhere outside the domain.

Proposition 4.3 (Comparison Principle on bounded domains for (1.1)). Let Ω be a
bounded domain of R+ × RN and let u ∈ USCb(R+ × RN) and v ∈ LSCb(R+ × RN) be
respectively a sub and a supersolution of

∂tu
ε = I1[uε(t, ·)]−W ′

(
uε

ε

)
+ σ

(
t

ε
,
x

ε

)
in Ω. If u ≤ v outside Ω, then u ≤ v in Ω.

Proposition 4.4 (Existence for (1.1)). For ε > 0 there exists uε ∈ Cb(R+×RN) (unique)
viscosity solution of (1.1). Moreover, there exists a constant C > 0 independent of ε such
that

(4.2) |uε(t, x)− u0(x)| ≤ Ct.

Proof. Adapting the argument of [22], we can construct a solution by Perron’s method
if we construct sub and supersolutions of (1.1). Since u0 ∈ W 2,∞, the two functions
u±(t, x) := u0(x)±Ct are respectively a super and a subsolution of (1.1) for any ε > 0, if

C ≥ DN‖u0‖2,∞ + ‖W ′‖∞ + ‖σ‖∞,
with DN depending on the dimension N . By comparison we also get the estimate (4.2).

2

We next recall the comparison and the existence results for (1.4).

Proposition 4.5 ([24], Proposition 3). Let H : RN × R→ R be continuous with H(p, ·)
non-decreasing on R for any p ∈ RN . If u ∈ USCb(R+ × RN) and v ∈ LSCb(R+ × RN)
are respectively a sub and a supersolution of (1.4), then u ≤ v on R+ × RN . Moreover
there exists a (unique) viscosity solution of (1.4).



14

In the next sections, we will embed the problem in the higher dimensional space
R+ × RN+1 by adding a new variable xN+1 in the equations. We will need the follow-
ing proposition showing that sub and supersolutions of the higher dimensional problem
are also sub and supersolutions of the lower dimensional one. This in particular implies
that the comparison principle between sub and supersolutions remains true increasing the
dimension.

Proposition 4.6. Assume F (t, x, xN+1, U, p, L) continuous and non-decreasing in L. Sup-
pose that U ∈ LSCb(R+ × RN+1) (resp., U ∈ USCb(R+ × RN+1)) is a viscosity superso-
lution (resp., subsolution) of

(4.3) Ut = F (t, x, xN+1, U,DxU, I1[U(t, ·, xN+1)]) in R+ × RN+1,

then, for any xN+1 ∈ R, U is a viscosity supersolution (resp., subsolution) of

Ut = F (t, x, xN+1, U,DxU, I1[U(t, ·, xN+1)]) in R+ × RN .

Proof. Notice that in (4.3), there is no derivative with respect to xN+1 and no integral
with respect to dxN+1. Therefore xN+1 only appears as a parameter that can (at least
formally) be frozen.
We now do the (rigorous) proof for supersolutions. Fix x0N+1 ∈ R. Let us consider a point
(t0, x0) ∈ R+ × RN and a smooth function ϕ : R+ × RN → R such that

U(t, x, x0N+1)− ϕ(t, x) ≥ U(t0, x0, x
0
N+1)− ϕ(t0, x0) = 0 for (t, x) ∈ Qτ,r(t0, x0),

with r = 1. We have to show that

∂tϕ(t0, x0) ≥ F (t0, x0, x
0
N+1, U(t0, x0, x

0
N+1), Dxϕ(t0, x0), I11 [ϕ(t0, ·), x0]

+ I21 [U(t0, ·, x0N+1), x0]).

Without loss of generality, we can assume that the minimum is strict. For ε > 0 let
ϕε : R+ × RN+1 → R be defined by

ϕε(t, x, xN+1) = ϕ(t, x)− 1

ε
|xN+1 − x0N+1|2.

Let (tε, xε, x
ε
N+1) be a minimum point of U − ϕε in Qτ,r(t0, x0, x

0
N+1). Standard argu-

ments show that (tε, xε, x
ε
N+1)→ (t0, x0, x

0
N+1) as ε→ 0 and that limε→0 U(tε, xε, x

ε
N+1) =

U(t0, x0, x
0
N+1). In particular, (tε, xε, x

ε
N+1) is internal to Qτ,r(t0, x0, x

0
N+1) for ε small

enough, then we get
(4.4)
∂tϕ(tε, xε) ≥ F (tε, xε, U(tε, xε, x

ε
N+1), Dxϕ(tε, xε), I11 [ϕ(tε, ·), xε] + I21 [U(tε, ·, xεN+1), xε]).

By the Dominate Convergence Theorem limε→0 I11 [ϕ(tε, ·), xε] = I11 [ϕ(t0, ·), x0]; by the
Fatou’s Lemma and the convergence of U(tε, xε, x

ε
N+1) to U(t0, x0, x

0
N+1), we deduce that

I21 [U(t0, ·, x0N+1), x0] ≤ lim inf
ε→0

I21 [U(tε, ·, xεN+1), xε].

Then, passing to the limit in (4.4) and using the continuity and monotonicity of F , we
get the desired inequality. 2
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4.3. Hölder regularity. In this subsection we state a regularity result for sub and su-
persolutions of semilinear non-local equations. The proof is postponed in the appendix.

Proposition 4.7 (Hölder regularity). Assume (H1) and let g1, g2 ∈ R. Suppose that
u ∈ C(R+ × RN) and bounded on R+ × RN is a viscosity subsolution of{

∂tu = I1[u(t, ·)] + g1 in R+ × RN

u(0, x) = 0 on RN ,

and a viscosity supersolution of{
∂tu = I1[u(t, ·)] + g2 in R+ × RN

u(0, x) = 0 on RN .

Then, for any 0 < α < 1, u ∈ Cα
x (R+ × RN) with < u >α

x≤ C, where C depends on
‖u‖∞, g1 and g2.

Notice that this regularity result will be used to establish a bound on the Hölder
regularity in y of ∂yN+1

V ±η for smooth approximate correctors V ±η that will be used in
Step 1.2 of the proof of Lemma 5.5 used in the proof of the convergence result (Theorem
1.2).

5. The proof of convergence

This section is dedicated to the proof of Theorem 1.2. As explained in Subsection 1.3,
we imbed our problem in a higher dimensional one. We consider U ε solution of

(5.1)

{
∂tU

ε = I1[U ε(t, ·, xN+1)]−W ′ (Uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN+1

U ε(0, x, xN+1) = u0(x) + xN+1 on RN+1.

By Proposition 4.6 and Proposition 4.2, the comparison principle holds true for (5.1).
Then, as in the proof of Proposition 4.4, by Perron’s method we have:

Proposition 5.1 (Existence for (5.1)). For ε > 0 there exists U ε ∈ Cb(R+ × RN+1)
(unique) viscosity solution of (5.1). Moreover, there exists a constant C > 0 independent
of ε such that

(5.2) |U ε(t, x, xN+1)− u0(x)− xN+1| ≤ Ct.

Let us exhibit the link between the problem in RN and the problem in RN+1.

Lemma 5.2 (Link between the problems on RN and on RN+1). If uε and U ε denote
respectively the solution of (1.1) and (5.1), then we have∣∣∣U ε(t, x, xN+1)− uε(t, x)− ε

⌊xN+1

ε

⌋∣∣∣ ≤ ε,

(5.3) U ε
(
t, x, xN+1 + ε

⌊a
ε

⌋)
= U ε(t, x, xN+1) + ε

⌊a
ε

⌋
for any a ∈ R.

This lemma is a consequence of the comparison principle for (5.1), the invariance by
ε-translations w.r.t. xN+1 and the monotonicity of U ε w.r.t. xN+1.

Let us now consider the problem

(5.4)

{
∂tU = H(∇xU, I1[U(t, ·, xN+1)]) in R+ × RN+1

U(0, x, xN+1) = u0(x) + xN+1 on RN+1.
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The link between problems (1.4) and (5.4) is given by the following lemma (analogue to
Lemma 5.2).

Lemma 5.3. Let u0 and U0 be respectively the solutions of (1.4) and (5.4). Then, we
have

U0(t, x, xN+1) = u0(t, x) + xN+1.

Lemma 5.3 is a consequence of the comparison principle for (5.4) and the invariance by
translations w.r.t. xN+1.

We need to make more precise the dependence of the real number λ given by Theorem
1.1 on its variables. The following properties will be shown in the next section.

Proposition 5.4 (Properties of the effective Hamiltonian). Let p ∈ RN and L ∈ R. Let
H(p, L) be the constant defined by Theorem 1.1, then H : RN × R → R is a continuous
function with the following properties:

(i) H(p, L)→ ±∞ as L→ ±∞ for any p ∈ RN ;
(ii) H(p, ·) is non-decreasing on R for any p ∈ RN ;

(iii) If σ(τ, y) = σ(τ,−y) then

H(p, L) = H(−p, L);

(iv) If W ′(−s) = −W ′(s) and σ(τ,−y) = −σ(τ, y) then

H(p,−L) = −H(p, L).

5.1. Proof of Theorem 1.2.
Step 1: The classical approach
By (5.2), we know that the family of functions {U ε}ε>0 is locally bounded, then U+ :=
lim sup∗ε→0 U

ε is everywhere finite. Classically we prove that U+ is a subsolution of (5.4).
Similarly, we can prove that U− = lim inf∗ε→0U

ε is a supersolution of (5.4). Moreover
U+(0, x, xN+1) = U−(0, x, xN+1) = u0(x) + xN+1. The comparison principle for (5.4),
which is an immediate consequence of Propositions 4.5 and 4.6, then implies that U+ ≤
U−. Since the reverse inequality U− ≤ U+ always holds true, we conclude that the two
functions coincide with U0, the unique viscosity solution of (5.4).

By Lemmata 5.2 and 5.3, the convergence of U ε to U0 proves in particular that uε

converges towards u0 viscosity solution of (1.4).

To prove that U+ is a subsolution of (5.4), we argue by contradiction. In what follows
we will use the notation X = (x, xN+1). We consider a test function φ such that U+ − φ
attains a zero maximum at (t0, X0) with t0 > 0 and X0 = (x0, x

0
N+1). Without loss of

generality we may assume that the maximum is strict and global. Suppose that there
exists θ > 0 such that

∂tφ(t0, X0) = H(∇xφ(t0, X0), L0) + θ,

where

L0 =

∫
|x|≤1

(φ(t0, x0 + x, x0N+1)− φ(t0, X0)−∇xφ(t0, X0) · x)µ(dx)

+

∫
|x|>1

(U+(t0, x0 + x, x0N+1)− U+(t0, X0))µ(dx).

(5.5)
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Step 2: Construction of φε

By Proposition 5.4, we know that there exists L1 > 0 (that we take minimal) such that

H(∇xφ(t0, X0), L0) + θ = H(∇xφ(t0, X0), L0 + L1).

By Propositions 3.1 and 5.4, we can consider a sequence Lη → L1 as η → 0+, such that
λ+η (∇xφ(t0, X0), L0 + Lη) = λ(∇xφ(t0, X0), L0 + L1). We choose η so small that Lη −
oη(1) ≥ L1/2 > 0, where oη(1) is defined in Proposition 3.1. Let V +

η be the approximate
supercorrector given by Proposition 3.1 with

p = ∇xφ(t0, X0), L = L0 + Lη

and
λ+η = λ+η (p, L0 + Lη) = ∂tφ(t0, X0).

For simplicity of notations, in the following we denote V = V +
η . We consider the function

F (t,X) = φ(t,X) − p · x − λt, and as in [23] and [24] we introduce the ”xN+1-twisted
perturbed test function” φε defined by:

(5.6) φε(t,X) :=

{
φ(t,X) + εV

(
t
ε
, x
ε
, F (t,X)

ε

)
+ εkε in ( t0

2
, 2t0)×B 1

2
(X0)

U ε(t,X) outside,

where kε ∈ Z will be chosen later.

Step 3: Checking that φε is a supersolution
Step 3.1: Outside Qr,r(t0, x0)
We are going to prove that φε is a supersolution of (5.1) in Qr,r(t0, X0) for some r < 1

2

properly chosen and such that Qr,r(t0, X0) ⊂ ( t0
2
, 2t0)×B 1

2
(X0). First, remark that since

U+−φ attains a strict maximum at (t0, X0) with U+−φ = 0 at (t0, X0) and V is bounded,
we can ensure that there exists ε0 = ε0(r) > 0 such that for ε ≤ ε0

(5.7) U ε(t,X) ≤ φ(t,X)+εV

(
t

ε
,
x

ε
,
F (t,X)

ε

)
−γr, in

(
t0
3
, 3t0

)
×B1(x0)\Qr,r(t0, x0)

for some γr = or(1) > 0. Hence choosing kε = d−γr
ε
e we get U ε ≤ φε outside Qr,r(t0, X0).

Step 3.2: Inside Qr0,r0(t0, x0): φ
ε tested by ψ

Let us next study the equation. From (5.3), we deduce that U+(t, x, xN+1 + a) =
U+(t, x, xN+1)+a for any a ∈ R, from which we derive that ∂xN+1

F (t0, X0) = ∂xN+1
φ(t0, X0) =

1. Then, there exists r0 > 0 such that the map

Id× F : Qr0,r0(t0, X0) −→ Ur0
(t, x, xN+1) 7−→ (t, x, F (t, x, xN+1))

is a C1-diffeomorphism from Qr0,r0(t0, X0) onto its range Ur0 . Let G : Ur0 → R be the
map such that

Id×G : Ur0 −→ Qr0,r0(t0, X0)
(t, x, ξN+1) 7−→ (t, x,G(t, x, ξN+1))

is the inverse of Id × F . Let us introduce the variables τ = t/ε, Y = (y, yN+1) with
y = x/ε and yN+1 = F (t,X)/ε. Let us consider a test function ψ such that φε−ψ attains
a global zero minimum at (t,X) ∈ Qr0,r0(t0, X0) and define

Γε(τ, Y ) =
1

ε
[ψ(ετ, εy,G(ετ, εy, εyN+1))− φ(ετ, εy,G(ετ, εy, εyN+1))]− kε.
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Then

ψ(t,X) = φ(t,X) + εΓε
(
t

ε
,
x

ε
,
F (t,X)

ε

)
+ εkε

and Γε is a test funtion for V :

(5.8) Γε(τ , Y ) = V (τ , Y ) and Γε(τ, Y ) ≤ V (τ, Y ) for all (ετ, εY ) ∈ Qr0,r0(t0, X0),

where τ = t/ε, y = x/ε, yN+1 = F (t,X)/ε, Y = (y, yN+1). From Proposition 3.1, we
know that V is Lipschitz continuous w.r.t. yN+1 with Lipschitz constant Mη depending
on η. This implies that

(5.9) |∂yN+1
Γε(τ , Y )| ≤Mη.

Simple computations yield with P = (p, 1) ∈ RN+1:

(5.10)

{
λ+η + ∂τΓ

ε(τ , Y ) = ∂tψ(t,X) +
(
1 + ∂yN+1

Γε(τ , Y )
)

(∂tφ(t0, X0)− ∂tφ(t,X)),

λ+η τ + P · Y + V (τ , Y ) = φε(t,X)
ε
− kε.

Using (5.10) and (5.9), Equation (3.7) yields for any ρ > 0

∂tψ(t,X) + or(1) ≥ L0 + Lη + I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y]

−W ′
(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
− oη(1).

(5.11)

With the following lemma (which will be proved in the next subsection), we make rigorous
the heuristic computations done in Subsection 3.1.2 to estimate the error when plugging
(3.4) in (3.2).

Lemma 5.5. (Supersolution property for φε)
For ε ≤ ε0(r) < r ≤ r0, we have

∂tψ(t,X) ≥ I1,11

[
ψ(t, ·, xN+1), x

]
+ I2,11

[
φε(t, ·, xN+1), x

]
−W ′

(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
− oη(1) + or(1) + Lη.

Let r ≤ r0 be so small that or(1) ≥ −L1/4. Then, recalling that Lη− oη(1) ≥ L1/2, for
ε ≤ ε0(r) we have

∂tψ(t,X) ≥ I1,11

[
ψ(t, ·, xN+1), x

]
+ I2,11

[
φε(t, ·, xN+1), x

]
−W ′

(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
+
L1

4
,

and therefore φε is a supersolution of (5.1) in Qr,r(t0, X0).
Step 4: Conclusion
Since U ε ≤ φε outside Qr,r(t0, X0), by the comparison principle, Proposition 4.3, we con-

clude that U ε(t,X) ≤ φ(t,X) + εV
(
t
ε
, x
ε
, F (t,X)

ε

)
+ εkε in Qr,r(t0, X0) and we obtain the

desired contradiction by passing to the upper limit as ε → 0 at (t0, X0) using the fact
that U+(t0, X0) = φ(t0, X0): 0 ≤ −γr.
This ends the proof of Theorem 1.2.
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5.2. Proof of Lemma 5.5. The result will follow from (5.11) and the following inequality

(5.12)
L0 + I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y]

≥ I1,11

[
ψ(t, ·, xN+1), x

]
+ I2,11

[
φε(t, ·, xN+1), x

]
+ or(1)

To show the result, we proceed in several steps. In what follows, we denote by C various
positive constants independent of ε. We start to call

L1
0 =

∫
|x|≤1

(φ(t0, x0 + x, x0N+1)− φ(t0, X0)−∇φ(t0, X0) · x)µ(dx),

L2
0 =

∫
|x|>1

(U+(t0, x0 + x, x0N+1)− U+(t0, X0))µ(dx).

Then, recalling the definition (5.5) of L0, we can write

L0 = L1
0 + L2

0.(5.13)

Keep in mind that yN+1 = F (t,X)
ε

. Since ψ(t,X) = φ(t,X) + εΓε
(
t
ε
, x
ε
, F (t,X)

ε

)
+ εkε, we

have

I1,11

[
ψ(t, ·, xN+1), x

]
= I1 + I2,(5.14)

where
I1 =

∫
|x|≤1

ε

(
Γε
(
t
ε
, x+x

ε
, F (t,x+x,xN+1)

ε

)
− Γε(τ , Y )

−∇yΓ
ε(τ , Y ) · x

ε
− ∂yN+1

Γε(τ , Y )∇xF (t,X) · x
ε

)
µ(dx),

I2 =

∫
|x|≤1

(
φ(t, x+ x, xN+1)− φ(t,X)−∇φ(t,X) · x

)
µ(dx).

In order to show (5.12), we show successively in Steps 1, 2 and 3:
I1 ≤ I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y] + or(1) + Cερ

I2 ≤ L1
0 + or(1)

I2,11

[
φε(t, ·, xN+1), x

]
≤ L2

0 + or(1)

Because the expressions are non linear and non local and with a singular kernel, there
is no simple computation and we have to carefully check those inequalities sometimes
splitting terms in easier parts to estimate.
Step 1: We can choose ε0 so small that for any ε ≤ ε0 and any ρ > 0 small enough

I1 ≤ I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y] + or(1) + Cερ.

Take ρ > 0, δ > ρ small and R > 0 large and such that εR < 1. Since g is even, we can
write

I1 = I01 + I11 + I21 + I31 ,
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where

I01 =

∫
|x|≤ερ

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )−∇yΓ

ε(τ , Y ) · x
ε

−∂yN+1
Γε(τ , Y )∇xF (t,X) · x

ε

)
µ(dx),

I11 =

∫
ερ≤|x|≤εδ

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx),

I21 =

∫
εδ≤|x|≤εR

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx),

I31 =

∫
εR≤|x|≤1

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx).

Moreover
I2,ρ1 [V (τ , ·, yN+1), y] = J1 + J2 + J3,

where

J1 =

∫
ρ<|z|≤δ

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz),

J2 =

∫
δ<|z|≤R

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz),

J3 =

∫
|z|>R

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz).

STEP 1.1: Estimate of I01 and I1,ρ1 [Γε(τ , ·, yN+1), y].
Since Γε is of class C2, we have

(5.15) |I01 |, |I
1,ρ
1 [Γε(τ , ·, yN+1), y]| ≤ Cερ,

where Cε depends on the second derivatives of Γε. Remark that if we knew that V is
smooth in y too, we could choose ρ = 0.
STEP 1.2 Estimate of I11 − J1.

Using (5.8) and the fact that g is even, we can estimate I11 − J1 as follows

I11 − J1 ≤
∫
ρ<|z|≤δ

[
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t, x)

ε

)]
µ(dz)

=

∫
ρ<|z|≤δ

{[
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t, x)

ε

)
−∂yN+1

V

(
τ , y + z,

F (t,X)

ε

)
∇xF (t,X) · z

]
+
[
∂yN+1

V (τ , y + z, yN+1)− ∂yN+1
V (τ , Y )

]
∇xF (t,X) · z

}
µ(dz).

Next, using (3.10) and (3.11), we get

(5.16) I11 − J1 ≤ C

∫
|z|≤δ

(|z|2 + |z|1+α)µ(dz) ≤ Cδα.

STEP 1.3 Estimate of I21 − J2.
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If Mη is the Lipschitz constant of V w.r.t. yN+1, then

I21 − J2 ≤
∫
δ<|z|≤R

(
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t,X)

ε

))
µ(dz)

≤Mη

∫
δ<|z|≤R

∣∣∣∣F (t, x+ εz, xN+1)

ε
− F (t,X)

ε

∣∣∣∣µ(dz)

≤Mη

∫
δ<|z|≤R

sup
|z|≤R

|∇xF (t, x+ εz, xN+1)||z|µ(dz).

Then

(5.17) I21 − J2 ≤ C sup
|z|≤R

|∇xF (t, x+ εz, xN+1)| log(R/δ)

STEP 1.4: Estimate of I31 and J3.
Since V is uniformly bounded on R+ × RN+1, we have

I31 ≤
∫
R<|z|≤ 1

ε

(
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V (τ , Y )

)
µ(dz)

≤
∫
|z|>R

2‖v‖∞µ(dz) ≤ C

R
.

(5.18)

Similarly

(5.19) |J3| ≤
C

R
.

Now, from (5.15), (5.16), (5.17), (5.18) and (5.19), we infer that

I1 ≤ I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y] + 2Cερ+ Cδα

+ C sup
|z|≤R

|∇xF (t, x+ εz, xN+1)| log

(
R

δ

)
+
C

R
.

We choose R = R(r) such R → +∞ as r → 0+, ε0 = ε0(r) such that Rε0(r) ≤ r and
δ = δ(r) > 0 such that δ → 0 as r → 0+ and r log(R/δ)→ 0 as r → 0+. With this choice,
for any ε ≤ ε0 and any ρ < δ

Cδα + C sup
|z|≤R

|∇xF (t, x+ εz, xN+1)| log

(
R

δ

)
+
C

R
= or(1) as r → 0+,

and Step 1 is proved.
Step 2: I2 ≤ L1

0 + or(1).
For 0 < ν < 1 we can split I2 and L1

0 as follows

I2 =

∫
|x|≤ν

(φ(t, x+ x, xN+1)− φ(t,X)−∇φ(t,X) · x)µ(dx)

+

∫
ν≤|x|≤1

(φ(t, x+ x, xN+1)− φ(t,X))µ(dx) = I12 + I22 ,

L1
0 =

∫
|x|≤ν

(φ(t0, x0 + x, x0N+1)− φ(t0, X0)−∇φ(t0, X0) · x)µ(dx)

+

∫
ν≤|x|≤1

(φ(t0, x0 + x, x0N+1)− φ(t0, X0))µ(dx) = T1 + T2.
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Since φ is of class C2 we have
I12 , T1 ≤ Cν.

Using the Lipschitz continuity of φ we get

I22 − T2 =

∫
ν<|x|≤1

Crµ(dx) ≤ C
r

ν
.

Hence, Step 2 follows choosing ν = ν(r) such that ν → 0 and r/ν → 0 as r → 0+.
Step 3: I2,11

[
φε(t, ·, xN+1), x

]
≤ L2

0 + or(1).
Remark that

U ε(t, x+x, xN+1)−φ(t,X)−εV (τ , Y )−εkε ≤ U+(t0, x0+x, x0N+1)−φ(t0, X0)+oε(1)+or(1).

Then, recalling that φ(t0, X0) = U+(t0, X0), for ε ≤ ε0 we get

I2,11

[
φε(t, ·, xN+1), x

]
− L2

0 ≤ or(1)

and Step 3 is proved.
Finally (5.13), (5.14), Steps 1, 2 and 3 give

I1,11

[
ψ(t, ·, xN+1), x

]
+ I2,11

[
φε(t, ·, xN+1), x

]
≤ I1,ρ1 [Γε(τ , ·, yN+1), y] + I2,ρ1 [V (τ , ·, yN+1), y]

+ L0 + or(1) + Cερ.

from which, using inequality (5.11) and letting ρ→ 0+, we get for ε ≤ ε0

∂tψ(t,X) ≥ I1,11

[
ψ(t, ·, xN+1), x

]
+ I2,11

[
φε(t, ·, xN+1), x

]
−W ′

(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
− oη(1) + or(1) + Lη

and this concludes the proof of the lemma. 2

6. Building of Lipschitz sub and supercorrectors

In this section we construct bounded sub and supersolutions of (3.6) that are Lipschitz
w.r.t. yN+1. As a byproduct, we will prove Theorem 1.1 and Proposition 5.4.

Proposition 6.1 (Lipschitz continuous sub and supercorrectors). Let λ be the quantity
defined by Theorem 1.1. Then, for any fixed p ∈ RN , P = (p, 1), L ∈ R and η > 0 small
enough, there exist real numbers λ+η (p, L), λ−η (p, L), a constant C > 0 (independent of
η, p and L) and bounded super and subcorrectors W+

η ,W
−
η i.e. respectively a super and a

subsolution of (3.6) (with respectively λ+η and λ−η in place of λ) such that

lim
η→0+

λ+η (p, L) = lim
η→0+

λ−η (p, L) = λ(p, L),

λ±η satisfy (i) and (ii) of Proposition 5.4 and for any (τ, Y ) ∈ R+ × RN+1

(6.1) |W±
η (τ, Y )| ≤ C.

Moreover W±
η are Lipschitz continuous w.r.t. yN+1 and α-Hölder continuous w.r.t. y for

any 0 < α < 1, with

(6.2) −1 ≤ ∂yN+1
W±
η ≤

‖W ′′‖∞
η

,

(6.3) < W±
η >α

y≤ Cη.
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In order to prove the proposition, for η ≥ 0, a0, L ∈ R, p ∈ RN and P = (p, 1), we
introduce the problem

(6.4)

 ∂τU = L+ I1[U(τ, ·, yN+1)]−W ′(U + P · Y ) + σ(τ, y)
+η[a0 + infY ′ U(τ, Y ′)− U(τ, Y )]|∂yN+1

U + 1| in R+ × RN+1

U(0, Y ) = 0 on RN+1.

We have the following result whose proof is postponed to the Appendix (Section 8).

Proposition 6.2 (Comparison principle for (6.4)). Let U1 ∈ USCb(R+ × RN+1) and
U2 ∈ LSCb(R+×RN+1) be respectively a viscosity subsolution and supersolution of (6.4),
then U1 ≤ U2 on R+ × RN+1.

6.1. Lipschitz regularity.

Proposition 6.3 (Lipschitz continuity in yN+1). Suppose η > 0. Let Uη ∈ Cb(R+×RN+1)
be the viscosity solution of (6.4). Then Uη is Lipschitz continuous w.r.t. yN+1 and for
almost every (τ, Y ) ∈ R+ × RN+1

(6.5) −1 ≤ ∂yN+1
Uη(τ, Y ) ≤ ‖W

′′‖∞
η

.

For a formal argument, we refer the reader to Step 1 of Subsection 3.2.

Proof. Let us define Û(τ, Y ) = U(τ, Y ) + yN+1, then Û satisfies
(6.6)

∂τ Û = L+ I1[Û(τ, ·, yN+1)]−W ′(Û + p · y) + σ(τ, y)

+η[a0 + infY ′(Û(τ, Y ′)− y′N+1)− (Û(τ, Y )− yN+1)]|∂yN+1
Û | in R+ × RN+1

Û(0, Y ) = yN+1 on RN+1.

We are going to prove that Û is Lipschitz continuous w.r.t. yN+1 with

0 ≤ ∂yN+1
Û(τ, Y ) ≤ 1 +

‖W ′′‖∞
η

.

By comparison, Û(t, y, yN+1) ≤ Û(t, y, yN+1 + h) for h ≥ 0, from which immediately

follows that ∂yN+1
Û ≥ 0. In particular we can replace |∂yN+1

Û | by ∂yN+1
Û in (6.6).

Let us now show that ∂yN+1
Û ≤ 1+ ‖W

′′‖∞
η

. We argue by contradiction by assuming that

for some T > 0 the supremum of the function Û(τ, y, yN+1)−Û(τ, y, zN+1)−K|yN+1−zN+1|
on [0, T ] × RN+1 is strictly positive as soon as K > 1 + ‖W ′′‖∞

η
. Then for δ, β > 0 small

enough, M defined by

M = max
(τ,y)∈[0,T ]×RN
yN+1,zN+1∈R

(
Û(τ, y, yN+1)− Û(τ, y, zN+1)−K|yN+1 − zN+1| − βψ(Y )− δ

T − τ

)
,

where ψ is defined as the function ψ2 in the proof of Proposition 4.7, is positive. For j > 0
let

Mj = max
τ,s∈[0,T ],y,z∈RN
yN+1,zN+1∈R

(
Û(τ, y, yN+1)− Û(s, z, zN+1)−K|yN+1 − zN+1| − βψ(Y )

− δ

T − τ
− j|τ − s|2 − j|y − z|2

)
,
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and let (τ j, yj, yjN+1, s
j, zj, zjN+1) ∈ ([0, T ]×RN+1)2 be a point where Mj is attained. Clas-

sical arguments show that Mj → M , (τ j, yj, yjN+1, s
j, zj, zjN+1) → (τ , y, yN+1, τ , y, zN+1)

as j → +∞, where (τ , y, yN+1, zN+1) is a point where M is attained.

Remark that 0 < τ < T , moreover, since Û(τ , y, yN+1) > Û(τ , y, zN+1) and Û is
nondecreasing in yN+1, it is

(6.7) yN+1 > zN+1.

In particular yjN+1 6= zjN+1 and 0 < sj, τj < T for j large enough. Hence, for r > 0, we
obtain the following viscosity inequalities

δ

(T − τj)2
+ j(tj − sj)

≤ L+ CNjr + βI1,r1 [ψ(·, yjN+1), y
j] + I2,r1 [Û(τ j, ·, yjN+1), y

j]

−W ′(Û(τ j, yj, yjN+1) + p · yj) + σ(τ j, yj) + η[a0 + inf
Y ′

(Û(τj, Y
′)− y′N+1)

− (Û(τ j, yj, yjN+1)− y
j
N+1)]

(
K

yjN+1 − z
j
N+1

|yjN+1 − z
j
N+1|

+ β∂yN+1
ψ(yj, yjN+1)

)
,

(6.8)

and

j(tj − sj)

≥ L− CNjr + I2,r1 [Û(sj, ·, zjN+1), z
j]−W ′(Û(sj, zj, zjN+1) + p · zj) + σ(sj, zj)

+ η[a0 + inf
Y ′

(Û(sj, Y
′)− y′N+1)− (Û(sj, zj, zjN+1)− z

j
N+1)]K

yjN+1 − z
j
N+1

|yjN+1 − z
j
N+1|

,

(6.9)

where CN is a constant depending on N . Since (τ j, yj, yjN+1, s
j, zj, zjN+1) is a maximum

point, we have

Û(τ j, yj + x, yjN+1)− Û(τ j, yj, yjN+1) ≤ Û(sj, zj + x, zjN+1)− Û(sj, zj, zjN+1)

+ β[ψ(yj + x, yjN+1)− ψ(yj, yjN+1)]

for any x ∈ RN , which implies that for any r > 0

I2,r1 [Û(τ j, ·, yjN+1), y
j] ≤ I2,r1 [Û(sj, ·, zjN+1), z

j] + βI2,r1 [ψ(·, yjN+1), y
j].

Hence, subtracting (6.8) with (6.9), sending r → 0+ and then j → +∞, we get

δ

(T − τ)2
≤ βI1[ψ(·, yN+1), y] +W ′(Û(τ , y, zN+1) + p · y)−W ′(Û(τ , y, yN+1) + p · y)

− η[Û(τ , y, yN+1)− Û(τ , y, zN+1)− (yN+1 − zN+1)]K
yN+1 − zN+1

|yN+1 − zN+1|
+ β∂yN+1

ψ(y, yN+1)η[a0 + inf
Y ′

(Û(τ , Y ′)− y′N+1)− (Û(τ , y, yN+1)− yN+1)]

≤ ‖W ′′‖∞|Û(τ , y, yN+1)− Û(τ , y, zN+1)|

−Kη[Û(τ , y, yN+1)− Û(τ , y, zN+1)− (yN+1 − zN+1)]
yN+1 − zN+1

|yN+1 − zN+1|
+ βC.

Then, using (6.7) and that K|yN+1 − zN+1| < Û(τ , y, yN+1) − Û(τ , y, zN+1), for β small
enough, we finally obtain
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(‖W ′′‖∞ + η − ηK)(Û(τ , y, yN+1)− Û(τ , y, zN+1)) ≥ 0,

which is a contradiction for K > 1 + ‖W ′′‖∞
η

. 2

6.2. Ergodicity.

Proposition 6.4 (Ergodic properties). There exists a unique λη = λη(p, L) such that the
viscosity solution Uη ∈ Cb(R+ × RN+1) of (6.4) with η ≥ 0, satisfies:

(6.10) |Uη(τ, Y )− λητ | ≤ C3 for all τ > 0, Y ∈ RN+1,

with C3 independent of η. Moreover

(6.11) L− ‖W ′‖∞ − ‖σ‖∞ + ηa0 ≤ λη ≤ L+ ‖W ′‖∞ + ‖σ‖∞ + ηa0.

Proof. For simplicity of notations, in what follows we denote U = Uη and λ = λη.
To prove the proposition we follow the proof of the analogue result in [24]. We proceed

in three steps.

Step 1: existence The functions W+(τ, Y ) = C+τ and W−(τ, Y ) = C−τ , where

C± = L± ‖W ′‖∞ ± ‖σ‖∞ + ηa0,

are respectively sub and supersolution of (6.4). Then the existence of a unique solution
of (6.4) follows from Perron’s method.
Step 2: control of the oscillations w.r.t. space.
We want to prove that there exists C1 > 0 such that

(6.12) |U(τ, Y )− U(τ, Z)| ≤ C1 for all τ ≥ 0, Y, Z ∈ RN+1.

STEP 2.1. For a given k ∈ ZN+1, we set P · k = l + α, with l ∈ Z and α ∈ [0, 1). The

function Ũ(τ, Y ) = U(τ, Y + k) +α is still a solution of (6.4), with Ũ(0, Y ) = α Moreover

U(0, Y ) = 0 ≤ Ũ(0, Y ) = α ≤ 1 = U(0, Y ) + 1.

Then from the comparison principle for (6.4) and invariance by integer translations we
deduce for all τ ≥ 0:

(6.13) |U(τ, Y + k)− U(τ, Y )| ≤ 1.

STEP 2.2. We proceed as in [24] by considering the functions

M(τ) := sup
Y ∈RN+1

U(τ, Y ), m(τ) := inf
Y ∈RN+1

U(τ, Y ),

q(τ) := M(τ)−m(τ) = osc U(τ, ·).
Let us assume that the extrema defining these functions are attained: M(τ) = U(τ, Y τ ),

m(τ) = U(τ, Zτ ).
It is easy to see that M(τ) and m(τ) satisfy in the viscosity sense

∂τM ≤ L+ I21 [U(τ, ·, yτN+1), y
τ ]−W ′(M + P · Y τ ) + σ(τ, yτ ) + η[a0 +m(τ)−M(τ)],

∂τm ≥ L+ I21 [U(τ, ·, zτN+1), z
τ ]−W ′(m+ P · Zτ ) + σ(τ, zτ ) + ηa0.
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Then q satisfies in the viscosity sense

∂τq ≤ I21 [U(τ, ·, yτN+1), y
τ ]− I21 [U(τ, ·, zτN+1), z

τ ]−W ′(M + P · Y τ )

+W ′(m+ P · Zτ ) + σ(τ, yτ )− σ(τ, zτ )

≤ I21 [U(τ, ·, yτN+1), y
τ ]− I21 [U(τ, ·, zτN+1), z

τ ] + 2‖W ′‖∞ + 2‖σ‖∞.

Let us estimate the quantity L(τ) := I21 [U(τ, ·, yτN+1), y
τ ]−I21 [U(τ, ·, zτN+1), z

τ ] from above
by a function of q. Let us define kτ ∈ ZN+1 such that Y τ − (Zτ + kτ ) ∈ [0, 1)N+1 and let

Z̃τ := Zτ + kτ . Using successively (6.13) and the first inequality in (6.5), we obtain:

L(τ) ≤
∫
|z|>1

(U(τ, yτ + z, yτN+1)− U(τ, Y τ ))µ(dz)

−
∫
|z|>1

(U(τ, z̃τ + z, z̃τN+1)− U(τ, Zτ ))µ(dz) + µ

≤
∫
|z|>1

(U(τ, yτ + z, yτN+1)− U(τ, Y τ ))µ(dz)

−
∫
|z|>1

(U(τ, z̃τ + z, yτN+1)− U(τ, Zτ ))µ(dz) + 2µ,

where µ = ‖µ0‖L1(RN\B1(0)). Now, let us introduce cτ = yτ+z̃τ

2
and δτ = yτ−z̃τ

2
∈ [0, 1

2
)N so

that yτ = cτ + δτ and z̃τ = cτ − δτ . Hence

L(τ) ≤ 2µ+

∫
|z|>1

(U(τ, cτ + z + δτ , yτN+1)− U(τ, Y τ ))µ(dz)

−
∫
|z|>1

(U(τ, cτ + z − δτ , yτN+1)− U(τ, Zτ ))µ(dz)

≤ 2µ+

∫
|z−δτ |>1

(U(τ, cτ + z, yτN+1)− U(τ, Y τ ))µ0(z − δτ )dz

−
∫
|z+δτ |>1

(U(τ, cτ + z, yτN+1)− U(τ, Zτ ))µ0(z + δτ )dz

≤ 2µ−
∫
{|z−δτ |>1}∩{|z+δτ |>1}

(U(τ, Y τ )− U(τ, Zτ )) min{µ0(z − δτ ), µ0(z + δτ )}dz

≤ 2µ− c0q(τ)

where c0 > 0. We conclude that q satisfies in the viscosity sense

∂τq(τ) ≤ 2‖W ′‖∞ + 2‖σ‖∞ + 2µ− c0q(τ),

with q(0) = 0, from which we obtain (6.12).
If the extrema are not attained, it suffices to consider for β > 0, Mβ(τ) := supY ∈RN+1(U(τ, Y )−

βψ(Y )), mβ(τ) := infY ∈RN+1(U(τ, Y ) + βψ(Y )), and qβ(τ) := Mβ(τ)−mβ(τ), where ψ is
defined as the function ψ2 in the proof of Proposition 4.7. By the properties of ψ, Mβ(τ)
and mβ(τ) are attained. Then, the previous argument shows that

qβ ≤ C1 + Cβ,

and passing to the limit as β → 0+ we get (6.12).
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Step 3: control of the oscillations in time. We follow [24] by introducing the two
quantities:

λ+(T ) := sup
τ≥0

U(τ + T, 0)− U(τ, 0)

T
and λ−(T ) := inf

τ≥0

U(τ + T, 0)− U(τ, 0)

T
,

and proving that they have a common limit as T → +∞. First let us estimate λ+(T )
from above. The function U+(t, Y ) := U(τ, 0) + C1 + C+t, is a supersolution of (6.4) if
C+ = L + ‖W ′‖∞ + ‖σ‖∞ + ηa0. Since U+(0, Y ) ≥ U(τ, Y ) if C1 is as in (6.12), by the
comparison principle for (6.4) in the time interval [τ, τ + τ0], for any τ0 > 0 and t ∈ [0, τ0]
we get

(6.14) U(τ + t, Y ) ≤ U(τ, 0) + C1 + C+t.

Similarly

(6.15) U(τ + t, Y ) ≥ U(τ, 0)− C1 + C−t,

where C− = L− ‖W ′‖∞ − ‖σ‖∞ + ηa0. We then obtain for τ0 = t = T and y = 0:

(6.16) L−‖W ′‖∞−‖σ‖∞+ηa0−
C1

T
≤ λ−(T ) ≤ λ+(T ) ≤ L+‖W ′‖∞+‖σ‖∞+ηa0+

C1

T
.

By definition of λ±(T ), for any δ > 0, there exist τ± ≥ 0 such that∣∣∣∣λ±(T )− U(τ± + T, 0)− U(τ±, 0)

T

∣∣∣∣ ≤ δ.

Let us consider α, β ∈ [0, 1) such that τ+−τ−−β = k ∈ Z, and U(τ+, 0)−U(τ+−k, 0)+α ∈
Z. From (6.12) we have

U(τ+, Y ) ≤ U(τ+, 0) + C1 ≤ U(τ+ − k, Y ) + 2C1 + (U(τ+, 0)− U(τ+ − k, 0))

≤ U(τ+ − k, Y ) + 2dC1e+ (U(τ+, 0)− U(τ+ − k, 0) + α).

Since σ(·, y) and W ′(·) are Z-periodic, the comparison principle for (6.4) on the time
interval [τ+, τ+ + T ] implies that:

U(τ+ + T, Y ) ≤ U(τ+ − k + T, Y ) + 2dC1e+ U(τ+, 0)− U(τ+ − k, 0) + 1.

Choosing Y = 0 in the previous inequality we get

U(τ+ + T, 0)− U(τ+, 0) ≤ U(τ+ − k + T, 0)− U(τ+ − k, 0) + 2dC1e+ 1

= U(τ− + β + T, 0)− U(τ− + β, 0) + 2dC1e+ 1,

and setting t = β and τ = τ− + T in (6.14) and τ = τ− in (6.15) we finally obtain:

Tλ+(T ) ≤ Tλ−(T ) + 4dC1e+ 1 + 2‖W ′‖∞ + 2‖σ‖∞ + 2δT.

Since this is true for any δ > 0, we conclude that:

|λ+(T )− λ−(T )| ≤ 4dC1e+ 1 + 2‖W ′‖∞ + 2‖σ‖∞
T

.

Now arguing as in [23] and [24], we conclude that there exist limT→+∞ λ
±(T ) =: λ and

|λ±(T )− λ| ≤ 4dC1e+ 1 + 2‖W ′‖∞ + 2‖σ‖∞
T

,

which implies that

|U(T, 0)− λT | ≤ 4dC1e+ 1 + 2‖W ′‖∞ + 2‖σ‖∞,
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and then, using (6.12) we get (6.10). The uniqueness of λ follows from (6.10). Finally,
(6.11) is obtained from (6.16) as T → +∞. 2

6.3. Proof of Theorem 1.1. Let us consider the viscosity solution of (6.4) for η = 0.
By Proposition 6.4 we know that there exists a unique λ such that U(τ, Y )/τ converges
to λ as τ goes to +∞ for any Y ∈ RN+1. Moreover, by Proposition 4.6, U(τ, y, 0) is
viscosity solution of (1.6). Hence, the theorem follows immediately from the uniqueness
of the viscosity solution of (1.6).

6.4. Proof of Proposition 6.1.
Step 1: Definition of W±

η

Let us denote by U+
η the solution of (6.4) with a0 = C1, where C1 is defined as in

(6.12), and by U−η the solution of (6.4) with a0 = 0. Let λ+η = limτ→+∞
U+
η (τ,Y )

τ
and

λ−η = limτ→+∞
U−η (τ,Y )

τ
; the existence of λ+η and λ−η is guaranteed by Proposition 6.4.

Now, we set

W+
η (τ, Y ) := U+

η (τ, Y )− λ+η τ
and

W−
η (τ, Y ) := U−η (τ, Y )− λ−η τ.

Step 2: Limits of λ±η
By stability (see e.g. [7]), for η → 0+ the sequence (U+

η )η converges to U solution of
(6.4) with η = 0. Moreover by (6.11) the sequence (λ+η )η is bounded. Take a subsequence
ηn → 0 as n → +∞ such that λ+ηn → λ∞ as n → +∞. We want to show that λ∞ = λ,

where λ = limτ→+∞
U(τ,Y )
τ

. By the proof of Theorem 1.1, we know that λ is the same
quantity defined in Theorem 1.1. Using (6.10), we get

|λ− λ∞| ≤
∣∣∣∣λ− U(τ, 0)

τ

∣∣∣∣+

∣∣∣∣U(τ, 0)

τ
−
U+
ηn(τ, 0)

τ

∣∣∣∣+

∣∣∣∣U+
ηn(τ, 0)

τ
− λ+ηn

∣∣∣∣+ |λ+ηn − λ∞|

≤
∣∣∣∣λ− U(τ, 0)

τ

∣∣∣∣+

∣∣∣∣U(τ, 0)

τ
−
U+
ηn(τ, 0)

τ

∣∣∣∣+
C3

τ
+ |λ+ηn − λ∞|

where C3 does not depend on n. Then, passing to the limit first as n→ +∞ and then as
τ → +∞, we obtain that λ = λ∞. This implies that λ+η → λ as η → 0.

The same argument shows that λ−η → λ as η → 0.
Step 3: W+

η and W−
η are respectively sub and supersolutions

Since by (6.12), C0+infY ′ U
+
η (τ, Y ′)−U+

η (τ, Y ) ≥ 0, W+
η is supersolution of (3.6) with λ =

λ+η . Moreover, by (6.10), W+
η is bounded on R+×RN+1 uniformly w.r.t. η: |W+

η (τ, Y )| ≤
C3 for all (τ, Y ) ∈ R+ × RN+1.
Step 4: regularity properties of W±

η

By (6.5), W+
η is Lipschitz continuous w.r.t. yN+1 and −1 ≤ ∂yN+1

W+
η ≤

‖W ′′‖∞
η

. This

implies that W+
η is also a viscosity subsolution of

(6.17) λ+η + ∂τV = L+ I1[V (τ, ·, yN+1)]−W ′(V + λ+η τ + P · Y ) + σ(τ, y)
+C1(‖W ′′‖∞ + η) in R+ × RN+1

V (0, Y ) = 0 on RN+1.
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By Proposition 4.6, W+
η is supersolution of (3.6) and subsolution of (6.17) in R+×RN

for any yN+1 ∈ R. Then by Proposition 4.7, W+
η is of class Cα w.r.t. y uniformly in yN+1

and η, for any 0 < α < 1.
Similar arguments show that W−

η is subsolution of (3.6) with λ = λ−η , is bounded on

R+ × RN+1, Lipschitz continuous w.r.t. yN+1 with −1 ≤ ∂yN+1
W+
η ≤

‖W ′′‖∞
η

and Hölder

continuous w.r.t. y. This concludes the proof of Proposition 6.1.

6.5. Proof of Proposition 5.4. The continuity of H(p, L) follows from stability of vis-
cosity solutions of (1.6) (see e.g. [7]) and from (6.10). Indeed, let (pn, Ln) be a sequence
converging to (p0, L0) as n→ +∞ and set λn = λ(pn, Ln), n ≥ 0. By (6.10), we have for
any τ > 0 ∣∣∣∣λn − wn(τ, y)

τ

∣∣∣∣ ≤ C3

τ
.

Stability of viscosity solutions of (1.6) implies that wn converges locally uniformly in (τ, y)
to a function w0 which is a solution of (1.6) with (p, L) = (p0, L0). This implies that
lim supn→+∞ |λn − λ0| ≤ 2C3

τ
for any τ > 0. Hence, we conclude that limn→+∞ λn = λ0.

Property (i) is an immediate consequence of (6.11).
The monotonicity in L of H(p, L) comes from the comparison principle.
Let us show (iii). Let v be the solution of (1.5) and λ = λ(p, L). Set ṽ(τ, y) := v(τ,−y).

Remark that I1[ṽ(τ, ·), y] = I1[v(τ, ·),−y]. If σ(τ, ·) is even then ṽ satisfies{
λ+ ∂τ ṽ = I1[ṽ(τ, ·), y] + L−W ′(ṽ + λt− p · y) + σ(τ, y) in R+ × RN

ṽ(0, y) = 0 on RN .

By the uniqueness of λ we deduce that λ(L, p) = λ(L,−p), i.e. (iii).
Finally let us turn to (iv). Define ṽ(τ, y) := −v(τ,−y). If W ′(·) and σ(τ, ·) are odd

functions, ṽ satisfies{
−λ+ ∂τ ṽ = I1[ṽ(τ, ·), y]− L−W ′(ṽ − λt+ p · y) + σ(τ, y) in R+ × RN

ṽ(0, y) = 0 on RN .

As before, we conclude that λ(−L, p) = −λ(L, p), i.e. (iv).

7. Smooth approximate correctors

In this section, we prove the existence of approximate correctors that are smooth w.r.t.
yN+1, namely Proposition 3.1. We first need the following lemma:

Lemma 7.1. Let u1, u2 ∈ Cb(R+ × RN) be viscosity subsolutions (resp., supersolutions)
of (3.6) in R+ × RN , then u1 + u2 is viscosity subsolution (resp., supersolution) of 2λ+ ∂τv = 2L+ I1[v]−W ′(u1 + P · Y + λτ)

−W ′(u2 + P · Y + λτ) + 2σ(τ, y) in R+ × RN

v(0, y) = 0 on RN .

For the proof see Lemma 5.8 in [8].
Next, let us consider a positive smooth function ρ : R → R, with support in B1(0)

and mass 1. We define a sequence of mollifiers (ρδ)δ by ρδ(s) = 1
δ
ρ
(
s
δ

)
, s ∈ R. Let W+

η
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(resp. W−
η ) be the Lipschitz supersolution (resp. subsolution) of (3.6) with λ = λ+η (resp.

λ = λ−η ), whose existence is guaranteed by Proposition 6.1. We define

(7.1) V ±η,δ(t, y, yN+1) := W±
η (t, y, ·) ? ρδ(·) =

∫
R
W±
η (t, y, z)ρδ(yN+1 − z)dz.

Lemma 7.2. The functions V +
η,δ and V −η,δ are respectively super and subsolution of

(7.2)
λ±η + ∂τV

±
η,δ = L+ I1[V ±η,δ(τ, ·, yN+1)] + σ(τ, y)
−
∫
RW

′(W±
η (τ, y, z) + p · y + z + λ±η τ)ρδ(yN+1 − z)dz in R+ × RN+1

V ±η (0, Y ) = 0 on RN+1.

Proof. We prove the lemma for supersolutions. Let Qe
h = e + [−h/2, h/2), ρδ(e, h) =∫

Qeh
ρδ(y)dy and

Ih(τ, y, yN+1) =
∑
e∈hZ

W+
η (τ, y, yN+1 − e)ρδ(e, h).

The function Ih is a discretization of the convolution integral and by classical results,
converges uniformly to V +

η,δ as h→ 0. By Proposition 4.6, W+
η is a viscosity supersolution

of (3.6) also in R+ × RN . Then, by Lemma 7.1, for any yN+1 ∈ R, Ih(τ, y, yN+1) is a
supersolution of


λ+η + ∂τV = L+ I1[V (τ, ·, yN+1)] + σ(τ, y)

∑
e∈hZ ρδ(e, h)

−
∑

e∈hZW
′(W+

η (τ, y, yN+1 − e)
+p · y + (yN+1 − e) + λ+η τ)ρδ(e, h) in R+ × RN

V (0, y) = 0 on RN .

Using the stability result for viscosity solution of non-local equations, see [7], we conclude
that V +

η,δ is supersolution of (7.2) in R+ × RN and hence also in R+ × RN+1. 2

7.1. Proof of Proposition 3.1. We first show that the functions V +
η,δ and V −η,δ, defined

in (7.1), are respectively super and subsolution of
(7.3)

λ±η + ∂τV
±
η,δ = L+ I1[V ±η,δ(τ, ·, yN+1)]−W ′(V ±η,δ + P · Y + λ±η τ)

+σ(τ, y)∓Cη,δ in R+ × RN+1

V ±η (0, Y ) = 0 on RN+1,



31

where Cη,δ = ‖W ′′‖∞(2δ‖W ′′‖∞/η + δ). Using (6.2) and the properties of the mollifiers,
we get∣∣W ′(V ±η,δ(τ, y, yN+1) + p · y + yN+1 + λ±η τ)

−
∫
R
W ′(W±

η (τ, y, z) + p · y + z + λ±η τ)ρδ(yN+1 − z)dz

∣∣∣∣
≤
∫
R

∣∣W ′(V ±η,δ(τ, y, yN+1) + p · y + yN+1 + λ±η τ)

− W ′(W±
η (τ, y, z) + p · y + z + λ±η τ)

∣∣ ρδ(yN+1 − z)dz

≤ ‖W ′′‖∞
∫
R

[∣∣V ±η,δ(τ, y, yN+1)−W±
η (τ, y, z)

∣∣+ |yN+1 − z|
]
ρδ(yN+1 − z)dz

≤ ‖W ′′‖∞
∫
R

[∫
R

∣∣W±
η (τ, y, r)−W±

η (τ, y, z)
∣∣ ρδ(yN+1 − r)dr + |yN+1 − z|

]
ρδ(yN+1 − z)dz

≤ ‖W ′′‖∞
∫
R

[∫
|yN+1−r|≤δ

‖W ′′‖∞
η
|r − z|ρδ(yN+1 − r)dr + |yN+1 − z|

]
ρδ(yN+1 − z)dz

≤ ‖W ′′‖∞
∫
|yN+1−z|≤δ

[
‖W ′′‖∞

η
(|yN+1 − z|+ δ) + |yN+1 − z|

]
ρδ(yN+1 − z)dz

≤ ‖W ′′‖∞
(

2δ
‖W ′′‖∞

η
+ δ

)
From this estimate and Lemma 7.2, we deduce that V +

η,δ and V −η,δ are respectively super and
subsolution of (7.3). Now, we choose δ = δ(η) such that ‖W ′′‖∞(2δ‖W ′′‖∞/η+δ) = oη(1)
as η → 0 and define

V ±η (τ, Y ) := V ±η,δ(η)(τ, Y ).

Then the functions V ±η are the desired super and subcorrectors. Indeed, we have already
shown that they are super and subsolution of (3.7) with λ+η and λ−η satisfying (3.8).
Properties (i) and (ii) of Proposition 5.4 can be shown as in the proof of the proposition.
Finally, (3.9), (3.10) and (3.11) easily follow from (6.1), (6.2), (6.3) and the properties of
the mollifiers. 2

8. Appendix

Proof of Proposition 4.7
Heuristic arguments
Before entering in the proof, let us start with an heuristic explanation. Indeed, replacing
∂tu by u, we should get a similar result for a stationary solution of

I1[u] + g2 ≤ u ≤ I1[u] + g1

At a point (x, y), with x 6= y, of supremum of

u(x)− u(y)−K|x− y|α

we have for r > 0  u(x) ≤ g1 +KI1,r1 [| · −y|α, x] + I2,r1 [u, x]

u(y) ≥ g2 −KI1,r1 [|x− ·|α, y] + I2,r1 [u, y]
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Setting e = x−y
|x−y| , ϕα(z) = |z|α and using the homogeneity of the functions, we get for

r = σ|x− y|

I1,r1 [| · −y|α, x] = −|x− y|α−1cσα = I1,r1 [|x− ·|α, y] with − cσα = I1,σ1 [ϕα, e]

Therefore we get

u(x)− u(y)−K|x− y|α ≤ g1 − g2 −K|x− y|α − 2K|x− y|α−1cσα + I2,r1 [u, x]− I2,r1 [u, y]

By the maximal property of (x, y), for any z ∈ RN we have

u(x+ z)− u(y + z) ≤ u(x)− u(y)

which implies that

I2,r1 [u, x]− I2,r1 [u, y] ≤ 0

We conclude that

u(x)− u(y)−K|x− y|α ≤ g1 − g2 −K|x− y|α − 2K|x− y|α−1cσα
We can show that cσα > 0, for σ small enough and then an optimization on |x− y| shows
that for K large enough, the right hand side is negative. This shows the Hölder estimate.

It turns out that the condition cσα > 0 is not satisfied for large values of σ.
Rigorous proof
We use standard techniques from the theory of regularity of viscosity solutions of uniformly
elliptic second-order local operators, see [28], adapted to our context.

We argue by contradiction, assuming that u does not belong to Cα
x (R+×RN). Let uε,ε

′

and uε,ε′ be respectively the double-parameters sup and inf convolution of u in R+ ×RN ,
i.e.

uε,ε
′
(t, x) = sup

(s,y)∈R+×RN

(
u(s, y)− 1

2ε
|x− y|2 − 1

2ε′
(t− s)2

)
,

uε,ε′(t, x) = inf
(s,y)∈R+×RN

(
u(s, y) +

1

2ε
|x− y|2 +

1

2ε′
(t− s)2

)
.

Then uε,ε
′

is semiconvex and is a subsolution of

∂tu
ε,ε′ = I1[uε,ε

′
(t, ·)] + g1 in (tε′ ,+∞)× RN

and uε,ε′ is semiconcave and is a supersolution of

∂tuε,ε′ = I1[uε,ε′(t, ·)] + g2 in (tε′ ,+∞)× RN ,

where tε′ → 0 as ε′ → 0, see e.g. Proposition III.2 in [5].
Since u is not Hölder continuous in x, there exists α ∈ (0, 1) such that for any K > 0

and ε, ε′ > 0

sup
(t,x1,x2)∈R+×R2N

uε,ε
′
(t, x1)− uε,ε′(t, x2)−K|x1 − x2|α

≥ sup
(t,x1,x2)∈R+×R2N

u(t, x1)− u(t, x2)−K|x1 − x2|α > 0.

In order to make the supremum attained at some point, let us introduce smooth positive
functions ψ1(t) and ψ2(x) with bounded first and second derivatives such that ψ1(t) →
+∞ as t → +∞, ψ2(x) → +∞ as |x| → +∞ and there exists K0 > 0 such that

|ψ2(x)| ≤ K0(1 +
√
|x|). The last assumption on ψ2 assures that I21 [ψ2] is finite at any
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point. Then, for any K > 0 and ε, ε′ > 0 and β > 0 small enough, the supremum on
R+ × R2N of the function

(8.1) uε,ε
′
(t, x1)− uε,ε′(t, x2)− φ(t, x1, x2),

where
φ(t, x1, x2) = K|x1 − x2|α + βψ1(t) + βψ2(x1),

is positive and is attained at some point (t, x1, x2) ∈ [0,+∞) × R2N . For ε, ε′ small
enough, x1 6= x2. Moreover, since uε,ε

′
(0, x) = uε,ε′(0, x) = 0 for any x ∈ RN , it turns out

that actually t > tε′ . Remark that

(8.2) |x1 − x2| ≤
(

2 sup(t,x)∈R+×RN |u(t, x)|
K

) 1
α

.

The function (8.1) is semiconvex, hence, by Aleksandrov’s Theorem, twice differentiable
almost everywhere. Let us now introduce a perturbation of it, for which we can choose
maximum points of twice differentiability. First we transform (t, x1, x2) into a strict
maximum point. In order to do that, we consider a smooth function h : R+ → R,
with compact support, such that h(0) = 0 and h(s) > 0 for 0 < s < 1 and we set
θ(t, x1, x2) = h((t − t)2) + h(|x1 − x1|2) + h(|x2 − x2|2). Clearly (t, x1, x2) is a strict
maximum point of uε,ε

′
(t, x1)− uε,ε′(t, x2)− φ(t, x1, x2)− θ(t, x1, x2). Next we consider a

smooth function χ : RN → R such that χ(x) = 1 if |x| ≤ 1/2 and χ(x) = 0 for |x| ≥ 1.
By Jensen’s Lemma, see e.g. Lemma A.3 of [9], for every small and positive δ there

exist sδ ∈ R, qδ1, qδ2 ∈ RN with |sδ|, |qδ1|, |qδ2| ≤ δ such that the function

(8.3) Φ(t, x1, x2) = uε,ε
′
(t, x1)− uε,ε′(t, x2)−K|x1 − x2|α − ϕ1(t, x1)− ϕ2(x2),

where

ϕ1(t, x1) = βψ1(t) + βψ2(x1) + h((t− t)2) + h(|x1 − x1|2) + sδt+ χ(x1 − x1)qδ1 · x1,
ϕ2(x2) = h(|x2 − x2|2) + χ(x2 − x2)qδ2 · x2,

has a maximum at (tδ, xδ1, x
δ
2), with

(8.4) |tδ − t|, |xδ1 − x1|, |xδ2 − x2| ≤ δ

and uε,ε
′
(t, x1) − uε,ε′(t, x2) is twice differentiable at (tδ, xδ1, x

δ
2). In particular uε,ε

′
is

twice differentiable w.r.t. x1 at (tδ, xδ1) and uε,ε′ is twice differentiable w.r.t. x2 at (tδ, xδ2).
The function χ has been introduced to make I21 [ϕ1] and I21 [ϕ2] finite.

For δ small enough, we can assume xδ1 6= xδ2 and this will allow us to compute the
derivatives of (8.3). Since (tδ, xδ1, x

δ
2) is a maximum point, we have

∇x1u
ε,ε′(tδ, xδ1) = ∇x1ϕ1(t

δ, xδ1) + αK|xδ1 − xδ2|α−2(xδ1 − xδ2),
∇x2uε,ε′(t

δ, xδ2) = −∇x2ϕ2(x
δ
2) + αK|xδ1 − xδ2|α−2(xδ1 − xδ2).

(8.5)

Moreover the inequalities

Φ(tδ, xδ1 + z, xδ2) ≤ Φ(tδ, xδ1, x
δ
2),

Φ(tδ, xδ1, x
δ
2 + z) ≤ Φ(tδ, xδ1, x

δ
2),

Φ(tδ, xδ1 + z, xδ2 + z) ≤ Φ(tδ, xδ1, x
δ
2),

for any z ∈ RN , with together (8.5), give respectively:
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uε,ε
′
(tδ, xδ1 + z)− uε,ε′(tδ, xδ1)−∇x1u

ε,ε′(tδ, xδ1) · z
≤ ϕ1(t

δ, xδ1 + z)− ϕ1(t
δ, xδ1)−∇x1ϕ1(t

δ, xδ1) · z
+K|xδ1 + z − xδ2|α −K|xδ1 − xδ2|α − αK|xδ1 − xδ2|α−2(xδ1 − xδ2) · z,

(8.6)

− (uε,ε′(t
δ, xδ2 + z)− uε,ε′(tδ, xδ2)−∇x2uε,ε′(t

δ, xδ2) · z)

≤ ϕ2(x
δ
2 + z)− ϕ2(x

δ
2)−∇x2ϕ2(x

δ
2) · z

+K|xδ1 − z − xδ2|α −K|xδ1 − xδ2|α + αK|xδ1 − xδ2|α−2(xδ1 − xδ2) · z,
(8.7)

and for any r > 0

uε,ε
′
(tδ, xδ1 + z)− uε,ε′(tδ, xδ1)−∇x1u

ε,ε′(tδ, xδ1) · z1Br(z)

≤ uε,ε′(t
δ, xδ2 + z)− uε,ε′(tδ, xδ2)−∇x2uε,ε′(t

δ, xδ2) · z1Br(z)

+ ϕ1(t
δ, xδ1 + z)− ϕ1(t

δ, xδ1)−∇x1ϕ1(t
δ, xδ1) · z1Br(z)

+ ϕ2(x
δ
2 + z)− ϕ2(x

δ
2)−∇x2ϕ2(x

δ
2) · z1Br(z),

(8.8)

where Br = Br(0). The last inequality in particular implies that

(8.9) I2,r1 [uε,ε
′
(tδ, ·), xδ1] ≤ I

2,r
1 [uε,ε′(t

δ, ·), xδ2] + I2,r1 [ϕ1(t
δ, ·), xδ1] + I2,r1 [ϕ2, x

δ
2].

Next, in order to test, we need to double the time variables. Hence, for j > 0, let us
consider the maximum point (tj, xj1, s

j, xj2) of the function

uε,ε
′
(t, x1)− uε,ε′(s, x2)−Ψ(t, x1, x2)−

j

2
|t− s|2,

where

Ψ(t, x1, x2) = K|x1 − x2|α + ϕ1(t, x1) + ϕ2(x2) + |t− tδ|2 + |x1 − xδ1|2 + |x2 − xδ2|2,
on Qρ,ρ(t

δ, xδ1) × Qρ,ρ(t
δ, xδ2), for ρ > 0 sufficiently small. Standard arguments show that

(tj, xj1, s
j, xj2) → (tδ, xδ1, t

δ, xδ2) as j → +∞. Hence for j large enough there exists ρ > 0
such that Qρ,ρ(t

j, xj1)×Qρ,ρ(s
j, xj2) ⊂ Qρ,ρ(t

δ, xδ1)×Qρ,ρ(t
δ, xδ2) and xj1 6= xj2. Testing, we

get

j(tj − sj) + 2(tj − tδ) + ∂tϕ1(t
j, xj1) ≤ I

1,ρ
1 [Ψ(tj, ·, xj2), x

j
1] + I2,ρ1 [uε,ε

′
(tj, ·), xj1] + g1,

j(tj − sj) ≥ −I1,ρ1 [Ψ(tj, xj1, ·), x
j
2] + I2,ρ1 [uε,ε′(s

j, ·), xj2] + g2.

Subtracting the two last inequalities, and then letting j → +∞, we have

∂tϕ1(t
δ, xδ1) ≤ I

1,ρ
1 [Ψ(tδ, ·, xδ2), xδ1] + I1,ρ1 [Ψ(tδ, xδ1, ·), xδ2]

+ I2,ρ1 [uε,ε
′
(tδ, ·), xδ1]− I

2,ρ
1 [uε,ε′(t

δ, ·), xδ2] + g1 − g2.

Since uε,ε
′
(tδ, ·) and uε,ε′(t

δ, ·) are twice differentiable respectively at x1 = xδ1 and x2 = xδ2,
we can pass to the limit as ρ→ 0+ and obtain

∂tϕ1(t
δ, xδ1) ≤ I1[uε,ε

′
(tδ, ·), xδ1]− I1[uε,ε′(tδ, ·), xδ2] + g1 − g2.

Using (8.9), we finally get

∂tϕ1(t
δ, xδ1) ≤ I

1,r
1 [uε,ε

′
(tδ, ·), xδ1]− I

1,r
1 [uε,ε′(t

δ, ·), xδ2]
+ I2,r1 [ϕ1(t

δ, ·), xδ1] + I2,r1 [ϕ2, x
δ
2] + g1 − g2.

(8.10)
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Next, let us estimate the term I1,r1 [uε,ε
′
(tδ, ·), xδ1] − I

1,r
1 [uε,ε′(t

δ, ·), xδ2] and show that it
contains a main negative part. For 0 < ν0 < 1, let us denote

Ar :=
{
z ∈ Br(0) , |z · (xδ1 − xδ2)| ≥ ν0|z||xδ1 − xδ2|

}
.

Then

I1,r1 [uε,ε
′
(tδ, ·), xδ1]− I

1,r
1 [uε,ε′(t

δ, ·), xδ2]

=

∫
Ar

[uε,ε
′
(tδ, xδ1 + z)− uε,ε′(tδ, xδ1)−∇x1u

ε,ε′(tδ, xδ1) · z

− (uε,ε′(t
δ, xδ2 + z)− uε,ε′(tδ, xδ2)−∇x2uε,ε′(t

δ, xδ2) · z)]µ(dz)

+

∫
Br\Ar

[...]µ(dz)

= T1 + T2.

From (8.8) we have

T2 ≤ C.

Here and henceforth C denotes various positive constants independent of the parameters.
Let us estimate T1. Using (8.6) and (8.7), and successively making the change of variable
z → −z, we get the following estimate of T1:

T1 ≤
∫
Ar

[K|xδ1 + z − xδ2|α −K|xδ1 − xδ2|α − αK|xδ1 − xδ2|α−2(xδ1 − xδ2) · z]µ(dz) + C

+

∫
Ar

[K|xδ1 − z − xδ2|α −K|xδ1 − xδ2|α + αK|xδ1 − xδ2|α−2(xδ1 − xδ2) · z]µ(dz)

= 2

∫
Ar

[K|xδ1 + z − xδ2|α −K|xδ1 − xδ2|α − αK|xδ1 − xδ2|α−2(xδ1 − xδ2) · z]µ(dz) + C

≤ αK

∫
Ar

sup
|t|≤1
{|xδ1 − xδ2 + tz|α−4(|xδ1 − xδ2 + tz|2|z|2

− (2− α)[(xδ1 − xδ2 + tz) · z]2)}µ(dz) + C.

Let us fix r = σ|xδ1 − xδ2|, σ > 0, then for z ∈ Ar
|xδ1 − xδ2 + tz| ≤ (1 + σ)|xδ1 − xδ2|,

|(xδ1 − xδ2 + tz) · z| ≥ |(xδ1 − xδ2) · z| − |z|2 ≥ (ν0 − σ) |xδ1 − xδ2||z|.
Let us choose 0 < σ < ν0 < 1 such that

C0 := −(1 + σ)2 + (2− α)(ν0 − σ)2 > 0,

then

T1 ≤ −CC0K|xδ1 − xδ2|α−2
∫
Ar

|z|2µ(dz) + C.

By homogeneity ∫
Ar

|z|2µ(dz) = Cr.

Then, we conclude

T1 ≤ −CC0K|xδ1 − xδ2|α−2r + C ≤ −CC0K|xδ1 − xδ2|α−1 + C,
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and from (8.10)

CC0K|xδ1 − xδ2|α−1 ≤ −∂tϕ1(t
δ, xδ1) + g1 − g2 + C

+ I2,r1 [ϕ1(t
δ, ·), xδ1] + I2,r1 [ϕ2, x

δ
2]

≤ g1 − g2 + C.

Letting δ go to 0, from the previous inequalities and (8.4) we finally obtain

K|x1 − x2|α−1 ≤ C,

where C is independent of K. This is a contradiction for K large enough, because of
(8.2), hence u ∈ Cα

x (R+ × RN). 2

Proof of Proposition 6.2
Let us define the functions V1(τ, Y ) := e−kτU1(τ, Y ) and V2(τ, Y ) := e−kτU2(τ, Y ), where
k := ‖W ′′‖∞ + 1. It is easy to see that V1 and V2 are respectively sub and supersolution
of

(8.11)

 ∂τV = Le−kτ + I1[V (τ, ·, yN+1)] + g(τ, Y, V )
+η[a0 + ekτ (infY ′ V (τ, Y ′)− V (τ, Y ))]|∂yN+1

V + e−kτ | in R+ × RN+1

V (0, Y ) = 0 on RN+1,

where g(τ, Y, V ) = −e−kτW ′(ekτV + P · Y ) − kV + e−kτσ(τ, y). Remark that, by the
choice of k,

(8.12) g(τ, Y, V1)− g(τ, Z, V2) ≤ −(V1 − V2) + e−kτ (‖W ′′‖∞|P |+ ‖σ′‖∞)|Y − Z|.
To prove the comparison between U1 and U2, it suffices to show that V1(τ, Y ) ≤ V2(τ, Y )
for all (τ, Y ) ∈ (0, T )× RN+1 and for any T > 0.

Suppose by contradiction that M = sup(τ,Y )∈(0,T )×RN+1(V1(τ, Y ) − V2(τ, Y )) > 0 for

some T > 0. Define for small ν1, ν2, β, δ > 0 the function φ ∈ C2((R+ × RN+1)2) by

φ(τ, Y, s, Z) =
1

2ν1
|τ − s|2 +

1

2ν2
|Y − Z|2 + βψ(Y ) +

δ

T − τ
,

where ψ is defined as the function ψ2 in the proof of Proposition 4.7. The supremum of
V1(τ, Y )−V2(s, Z)−φ(τ, Y, s, Z) is attained at some point (τ , Y , s, Z) ∈ ((0, T )×RN+1)2.
Standard arguments show that, because U1 and U2 are assumed bounded

(τ , Y , s, Z)→ (τ̂ , τ̂ , Ŷ , Ẑ) as ν1 → 0,

V1(τ , Y )→ V1(τ̂ , Ŷ ), V2(s, Z)→ V2(τ̂ , Ẑ) as ν1 → 0,

where (τ̂ , Ŷ , Ẑ) is a maximum point of V1(τ, Y )− V2(τ, Z)− 1
2ν2
|Y −Z|2 − βψ(Y )− η

T−τ .
Moreover, it is easy to see that

lim sup
ν1→0

inf
Y ′
V1(τ , Y

′) ≤ inf
Y ′
V1(τ̂ , Y

′), lim inf
ν1→0

inf
Y ′
V2(s, Y

′) ≥ inf
Y ′
V2(τ̂ , Y

′).

Since V1 and V2 are respectively sub and supersolution of (8.11), for any r > 0 we have

δ

(T − τ)2
+
τ − s
ν1

≤ Le−kτ +
CNr

ν2
+ βI1,r1 [ψ(·, yN+1), y] + I2,r1 [V1(τ , ·, yN+1), y] + g(τ , Y , V1(τ , Y ))

+ η[a0 + ekτ (inf
Y ′
V1(τ , Y

′)− V1(τ , Y ))]

∣∣∣∣yN+1 − zN+1

ν2
+ β∂yN+1

ψ(Y ) + e−kτ
∣∣∣∣

(8.13)
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and
τ − s
ν1
≥ Le−ks − CNr

ν2
+ I2,r1 [V2(s, ·, zN+1), z] + g(s, Z, V2(s, Z))

+ η[a0 + eks(inf
Y ′
V2(s, Y

′)− V2(s, Z))]

∣∣∣∣yN+1 − zN+1

ν2
+ e−ks

∣∣∣∣ ,(8.14)

where CN is a constant depending on the dimension N . Since (τ , Y , s, Z) is a maximum
point, we have

V1(τ , y + x, yN+1)− V1(τ , Y ) ≤ V2(s, z + x, zN+1)− V2(s, Z) + β[ψ(y + x, yN+1)− ψ(Y )],

for any x ∈ RN , which implies that for any r > 0

I2,r1 [V1(τ , ·, yN+1), y] ≤ I2,r1 [V2(s, ·, zN+1), z] + βI2,r1 [ψ(·, yN+1), y].

Then, subtracting (8.13) with (8.14) and letting r → 0+, we get

δ

(T − τ)2
≤ L(e−kτ − e−ks) + βI1[ψ(·, yN+1), y] + g(τ , Y , V1(τ , Y ))− g(s, Z, V2(s, Z))

+ η[a0 + ekτ (inf
Y ′
V1(τ , Y

′)− V1(τ , Y ))]

∣∣∣∣yN+1 − zN+1

ν2
+ β∂yN+1

ψ(Y ) + e−kτ
∣∣∣∣

− η[a0 + eks(inf
Y ′
V2(s, Y

′)− V2(s, Z))]

∣∣∣∣yN+1 − zN+1

ν2
+ e−ks

∣∣∣∣ .
Next, letting ν1 → 0 and using (8.12), we obtain

δ

(T − τ̂)2

≤ βI1[ψ(·, ŷN+1), ŷ]− (V1(τ̂ , Ŷ )− V2(τ̂ , Ẑ)) + e−kτ̂ (‖W ′′‖∞|P |+ ‖σ′‖∞)|Ŷ − Ẑ|+ Cβ

+ ηekτ̂ [inf
Y ′
V1(τ̂ , Y

′)− inf
Y ′
V2(τ̂ , Y

′)− (V1(τ̂ , Ŷ )− V2(τ̂ , Ẑ))]

∣∣∣∣ ŷN+1 − ẑN+1

ν2
+ e−kτ̂

∣∣∣∣ .

(8.15)

It is easy to prove that

(8.16) lim inf
(β,δ)→(0,0)

(V1(τ̂ , Ŷ )− V2(τ̂ , Ẑ)) ≥M

and
|Ŷ − Ẑ|2

ν2
≤ C,

where C is independent of β and δ. Up to subsequence, τ̂ → τ0 ∈ [0, T ] as (β, δ)→ (0, 0)
and by (8.16), we have

lim sup
(β,δ)→(0,0)

[inf
Y ′
V1(τ̂ , Y

′)− inf
Y ′
V2(τ̂ , Y

′)− (V1(τ̂ , Ŷ )− V2(τ̂ , Ẑ))]

≤ inf
Y ′
V (τ0, Y

′)− inf
Y ′
V2(τ0, Y

′)− sup
Y ′

(V1(τ0, Y
′)− V2(τ0, Y ′))

≤ 0.

Then, passing to the limit first as (β, δ)→ (0, 0) and then as ν2 → 0 in (8.15) we finally
get the contradiction:

M ≤ 0,
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and this concludes the proof of the comparison theorem. 2
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