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ABSTRACT. This paper is concerned with a result of homogenization of an integro-
differential equation describing dislocation dynamics. Our model involves both an anisotropic
Lévy operator of order 1 and a potential depending periodically on u/e. The limit equa-
tion is a non-local Hamilton-Jacobi equation, which is an effective plastic law for densities

of dislocations moving in a single slip plane.

1. INTRODUCTION

In this paper we are interested in homogenization of the Peierls-Nabarro model, which
is a phase field model describing dislocations. In this model a dislocation is described by
a phase transition. Dislocations are moving defects in crystals that can be described at
several scales by different models:

atomic scale (Frenkel-Kontorova model),

microscopic scale (Peierls-Nabarro model),

mesoscopic scale (Discrete dislocation dynamics),

macroscopic scale (elasto-visco-plasticity with density of dislocations).

Several changes of scales already exist in the literature: see for instance [12] for a pre-
sentation of rigorous passages from atomic scale to microscopic scale, from microscopic
scale to mesoscopic scale and from mescoscopic scale to macroscopic scale. Notice that
the passage from Peierls-Nabarro model to the Discrete dislocation dynamics is only done
in dimension 1 (see [12] and [19]). On the contrary in higher dimensions, the large scale
limit of a single phase transition described by the Peierls-Nabarro model shows that the
line tension effect is the much stronger term. The limit model appears to be the mean
curvature motion (see [25]).

Our goal in this paper is to understand the large scale limit of the Peierls-Nabarro model
in the case of a large number of phase transitions (i.e. of dislocations), recovering at the
limit a model with evolution of dislocation densities. In other words, we want to perform
a direct passage in any dimensions from the microscopic scale (Peierls-Nabarro model)
to the macroscopic scale (elasto-visco-plasticity with density of dislocations). In physics
and mechanics, it is a great challenge to try to predict macroscopic elasto-visco-plasticity
properties of materials (like metals), based on microscopic properties like dislocations.

In our work, we try to tackle this question in a very simplified geometry where all the
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dislocations are contained in the same slip plane with the same Burgers vector. For a
physical introduction to the Peierls-Nabarro model, see for instance [20]; for a recent
reference, see [38]; we also refer the reader to the paper of Nabarro [35] which presents
an historical tour on the Peierls-Nabarro model. See also Section 2 for a more physical
presentation of the Peierls-Nabarro model and an interpretation of our results.

1.1. Setting of the problem. The Peierls-Nabarro model has been originally introduced
as a variational (stationary) model (see [35]). The time evolution Peierls-Nabarro model
as a gradient flow dynamics has only been introduced quite recently, see for instance [33]
and [10]. In the present paper we consider such a time evolution Peierls-Nabarro model
that can be written at the microscopic scale for the parameter ¢ = 1 as the following
equation

€’

u(0, z) = up(x) on RV

(1.1) {atue = Tifus(t, )] - W' (£) +o(4,2) in R* xRV

For the physical application that we have in mind, we consider a three-dimensional crystal
which contains a crystallographic plane RY with N = 2. This plane contains the dislo-
cations that are represented by transitions of the phase function u¢. Here u¢ solves the
non local (and non linear) heat equation (1.1). Indeed Z; stands here for an anisotropic
half Laplacian (whose expression will be precised below). Here the anisotropy comes both
from the possible anisotropy of the elasticity of the crystal and from the fact that the
Burgers vector is assumed to be contained in the slip plane RY which creates a preferable
direction. The dynamics is assumed to be fully overdamped and then the right hand
side of the equation is the sum of three force terms: Z;[uf] is the elastic stress created
by the dislocation themselves, —W" is the force deriving from the potential W describing
the misfit between the two half crystals separated by the plane RY, and o is a stress
created by the obstacles in the crystal or/and an applied exterior stress. For simplicity
o is assumed to be periodic in order to analyse by homogenization the effect on the dy-
namics of periodic obstacles everywhere in the crystal. We consider time periodicity for
two reasons: one in order to take into account exterior periodic loads, and the second
for generality. Indeed, if o(t/e,x/¢) is replaced by an oscillation at a different scale like
o(t/eV,x/e7) with v # 1, then we expect (but it is not proven) that there is a two-scales
homogenization effect. If v > 1, then we expect that there is first homogenization of o,
where only its mean value will be taken into account at the microscopic scale, and in
a second step, we get the macroscopic model by homogenization of the Peierls-Nabarro
model with constant o. If v < 1, we expect first to freeze o and get the macroscopic
model by homogenization of the Peierls-Nabarro model for constant o, and in a second
step we remind us that o is slowly oscillating, and there is a second homogenization of
the macroscopic model.

Here e describes the ratio between the microscopic scale and the macroscopic scale,
and then is a small parameter. After a suitable rescaling at the macroscopic scale, the
Peierls-Nabarro model becomes (1.1). In this paper we investigate the limit as ¢ — 0 of
the viscosity solution u¢ of (1.1).

We give the precise definitions and assumptions on the terms involved in (1.1). Here
T, is an anisotropic Lévy operator of order 1, defined on bounded C?- functions for r > 0
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where the function g satisfies

(H1) g € C(SY™), g > 0, g even.
On the functions W, ¢ and uy we assume:

(H2) W € CY(R) and W (v + 1) = W (v) for any v € R;

(H3) 0 € COYRT x RY) and o(t + 1,2) = o(t,z), o(t,x + k) = o(t,x) for any k € ZN

and (t,z) € RT x RY;

(H4) ug € W2(RN).

When g = C, with Cy a suitable constant depending on the dimension N, then (1.2)
is the integral representation of —(—A)% for bounded real smooth functions defined on

RY (see Theorem 1 in [11]). We recall that (—A)2 is the fractional operator defined for
instance on the Schwartz class S(RY) by

(1.2)

—

(1.3) (=A)zv (&) = [¢] B(¢),

where @ is the Fourier transform of w.
We prove that the limit u° of u¢ as ¢ — 0 exists and is the unique solution of the
homogenized problem

(1.4) {atu CH(Vou,Lfu(t,)]) in R* x RV

u(0,x) = up(x) on RV,

for some continuous function H usually called effective Hamiltonian. The function u°

will be interpreted later as a macroscopic plastic strain satisfying the macroscopic plastic
flow rule (1.4). Moreover Z;[u’] will be the stress created by the macroscopic density of
dislocations.

1.2. Main results. As usual in periodic homogenization, the limit equation is determined
by a cell problem. In our case, such a problem is for any p € RY and L € R the following:

(15) A 0v=Tw(r, )+ L-Ww+A+p-y)+o(r,y) in RT xRY
' v(0,y) =0 on RN,

where A = A(p, L) is the unique number for which there exists a solution v of (1.5) which
is bounded on R* x RY. In order to solve (1.5), we show for any p € RY and L € R the
existence of a unique solution of

(1.6) {&w = Tiw(r, )]+ L—W'(w+p-y)+o(r,y) in R xRY

w(0,y) =0 on RV,

and we look for some A € R for which w — A7 is bounded. Precisely we have:



4

Theorem 1.1 (Ergodicity). Assume (H1)-(H{). For L € R and p € RY, there exists
a unique viscosity solution w € Cy(RT x RY) of (1.6) and there exists a unique A € R

such that w satisfies: M converges towards A as T — +00, locally uniformly in y. The

real number X is denoted by H(p, L). The function H(p, L) is continuous on RN x R and
non-decreasing in L.

Unfortunately, we cannot directly use the bounded solution of (1.5), usually called
corrector, in order to prove the convergence of the sequence u¢ to the solution of (1.4).
Nevertheless we have the following result:

Theorem 1.2 (Convergence). Assume (H1)-(H4). The solution u¢ of (1.1) converges
towards the solution u® of (1.4) locally uniformly in (t,x), where H is defined in Theorem
1.1.

Let us mention that in a companion paper [32], we show that we can recover Orowan’s
law in dimension N =1 for ¢ =0, i.e.

H(6p,0L) ~ cyd*|p|L as §—0

i.e. the plastic strain velocity is asymptotically proportional to the product of dislocation
density [p| by the effective stress L.

1.3. Brief review of the literature. This non-local equation (1.1) is related to the
local equation

17 Quc=F (£,“,Vu) in RT xRN
(L.7) u(0,x) = up(z) on RV,

that was studied in [23] under the assumption that F'(x,u,p) is periodic in (z,u) and
coercive in p. The homogenization problem (1.7) when F' does not depend on u, has
been completely solved by Lions Papanicolaou and Varadhan [31]. After this seminal
paper, homogenization of Hamilton-Jacobi equations for coercive Hamiltonians has been
treated for a wider class of periodic situations, c.f. Ishii [27], for problems set on bounded
domains, c.f. Alvarez [1], Horie and Ishii [21], for equations with different structures,
c.f. Alvarez and Ishii [4], for deterministic control problems in L*, c.f. Alvarez and
Barron [2], for almost periodic Hamiltonians, c.f. Ishii [26], and for Hamiltonians with
stochastic dependence, c.f. Souganidis [37]. More recently, inspired by [23], Barles [6] gave
an homogenization result for non-coercive Hamiltonians and, as a by-product, obtained a
simpler proof of the results [23] of Imbert and Monneau but under slightly more restrictive
assumptions on the Hamiltonians. We can also mention the work of Imbert, Monneau
and Rouy [24] where the authors studied homogenization of certain integro-differential
equations depending explicitly on u¢/e. Notice that in the present paper, the operator Z;
involves a singular kernel which creates some additional difficulties that were not present
for instance in [24].

Notice also that the model studied in [24] was introduced to approximate a level set
model like in [14]. The phase field model in [24] was therefore closer in the spirit to a
model for discrete dislocation dynamics at the mesoscopic scale. On the contrary, the
Peierls-Nabarro model (1.1) is a well-established physical model which is really devoted
to the description of dislocations at the microscopic scale.
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1.4. Organization of the paper. The paper is organized as follows. In Section 2, we
give more details about the Peierls-Nabarro model yielding to the study of (1.1) and the
mechanical interpretation of the homogenization results. In Section 3 we present briefly
the strategies of the main proofs. In Section 4, we state various comparison principles,
existence and regularity results for solutions of non-local Hamilton-Jacobi equations. In
Section 5, we prove the convergence result (Theorem 1.2) by assuming the existence of
smooth approximate sub and supercorrectors (Proposition 3.1). In order to show their
existence, in Section 6, we first construct Lipschitz continuous sub and supercorrectors
(Proposition 6.1). As a byproduct, we prove the ergodicity of the problem (Theorem 1.1)
and some properties of the effective Hamiltonian (Proposition 5.4). Proposition 3.1 is
then proved in Section 7. The proofs of Lemma 4.7 and of Proposition 6.2 are done in
the Appendix (Section 8).

1.5. Notations. We denote by B,(z) the ball of radius r centered at z. The cylinder
(t —7,t+ 1) % B,(x) is denoted by Q,,(t, ).
|z| and [z] denote respectively the floor and the ceil integer parts of a real number x.
It is convenient to introduce the singular measure defined on RY \ {0} by

1 z

p(dz) = —x79 | 77 ) d= = po(2)dz,
2] (|Z|>

and to denote

T (U,2) = /| U+2) ~Ulw) = VU(E) <)),

7.l = [ (U2~ Ua)ua:).

Sometimes when r = 1 we will omit 7 and we will write simply Z] and Z?.
For a function u defined on (0,T) x RV, 0 < T < 400, for 0 < a < 1 we denote by
< u > the seminorm defined by

t —u(t, a
custe wp MG —u(a)

/
(t,2), (t,z')€(0,T) xRN |x - |a
z#x!

and by C2((0,T) x RY) the space of continuous functions defined on (0,7) x RY that are
bounded and with bounded seminorm < u >¢.

Finally, we denote by USCy(RT x RY) (resp., LSCy(RT x RY)) the set of upper (resp.,
lower) semicontinuous functions on R* x RY which are bounded on (0,7) x RY for any
T > 0 and we set Cy(RT x RY) := USC,(RT x RY) N LSCy(RT x RY).

2. PHYSICAL MODELING AND MECHANICAL INTERPRETATION OF THE
HOMOGENIZATION RESULTS

2.1. The Peierls-Nabarro model. Dislocations are line defects in crystals. Their typ-
ical length is of the order of 107%m and their thickness of order of 107%m. When the
material is submitted to shear stress, these lines can move in the crystallographic planes
and their dynamics is one of the main explanation of the plastic behavior of metals.

The Peierls-Nabarro model is a phase field model for dislocation dynamics incorporating
atomic features into continuum framework. In a phase field approach, the dislocations
are represented by transition of a continuous field.



We briefly review the model (see [20] for a detailed presentation). As an example,
consider an edge dislocation in a crystal with simple cubic lattice. In a Cartesian system of
coordinates z1zo73, we assume that the dislocation is located in the slip plane x1xs (where
the dislocation can move) and that the Burgers’ vector (i.e. a fixed vector associated to
the dislocation) is in the direction of the z; axis. We write this Burgers’ vector as be;
for a real b. The disregistry of the upper half crystal {z3 > 0} relative to the lower half
{z3 < 0} in the direction of the Burgers’ vector is ¢(z1, z2), where ¢ is a phase parameter
between 0 and b. Then the dislocation loop can be for instance localized by the level set
¢ = b/2. For a closed loop, we expect to have ¢ ~ b inside the loop and ¢ ~ 0 far outside
the loop.

In the Peierls-Nabarro model, the total energy is given by

(2.1) €= &4 Ems,

In (2.1), £™* is the so called misfit energy due to the nonlinear atomic interaction
across the slip plane

EM (@)= [ W(o)) du with @ = (w1,22),

where W (¢) is the interplanar potential. In the classical Peierls-Nabarro model [36, 34],
W (o) is approximated by the sinusoidal potential

Wi(¢) = 4L7Lr[)22d (1 — cos <¥)> :

where d is the lattice spacing perpendicular to the slip plane.

The elastic energy £ induced by the dislocation is (for X = (x, z3) with x = (21, 29))

1 e(U) =1 (VU + (VU)T)
E e, U) = 3 /}R3 e:N:edX with e=e(U)—¢(x)do(r3)e’ and

60:%(€1®63+63®61)

where U : R?* — R? is the displacement and A = {A;j} are the elastic coefficients.
Given the field ¢, we minimize the energy £%(¢, U) with respect to the displacement U
and define

£°(6) = inf £°(,U)
Following the proof of Proposition 6.1 (iii) in [3], we can see that (at least formally)

&) = =5 [ laxa)o

where ¢ is a certain kernel. In the case of isotropic elasticity, we have
Nijri = NijOn + o (Oirdji + 0udjn)

where A, pu are the Lamé coefficients. Then the kernel ¢y can be written (see Proposition
6.2 in [3], translated in our framework):

and v = A
1—v 2\ +p)

1 1
Co($) = ﬁ 822— + ’)/811— with Y=
A7 || ||

where v € (—1,1/2) is called the Poisson ratio.



7

The equilibrium configuration of straight dislocations is obtained by minimizing the
total energy with respect to ¢, under the constraint that far from the dislocation core,
the function ¢ tends to 0 in one half plane and to b in the other half plane. In particular,
the phase transition ¢ is then solution of the following equation

(2.2) Ti[g] = W'(¢) onR?,

where formally Z;[¢] = ¢o x ¢, which is the anisotropic Lévy operator defined in (1.2) for
N =2and g(z1, 22) = £ ((2y — 1)27 + (2 — 7)#3). Let us now recall the expression of the
kernel after a Fourier transform (see paragraph 6.2.2.2 in [3])

&(8) = —ﬁ (€2 4+ 7&2)

Then for v = 1 and p = 2, we see that Z; = —(—A)%.~ In that special case, we recall that

the solution ¢ of (2.2) satisfies ¢(x) = ¢(x,0) where ¢(X) is the solution of (see [30, 19])
Ap=0 in  {x3 >0}
aq; _ o _
Oy Wi¢) on {ws=0}

Moreover, we have in particular an explicit solution for b = 1, d = 2 (with W'(¢) =
3= sin(27¢))

~ 1 1 I
X)= -+ —arct
P(X) 2+Warcan<x3+1)

Then by rescaling, it is easy to check that we can recover the explicit solution found in
Nabarro [34]

b b 2(1 —
¢(x) = = + —arctan 2 = v)n (edge dislocation)
2 7 d
2
o(x) = g + b arctan (%) (screw dislocation)
s

In a more general model, one can consider a potential W satisfying
(i) W(v+b) = W(u) for all v € R;
(ii)) W(bZ) =0 < W(a) for all a € R \ bZ.
The periodicity of W reflects the periodicity of the crystal, while the minimum property
is consistent with the fact that the perfect crystal is assumed to minimize the energy.

In the face cubic structured (FCC) observed in many metals and alloys, dislocations
move at low temperature on the slip plane. In the present paper we are interested in
describing the effective dynamics for a collection of dislocations curves with the same
Burgers’ vector and all contained in a single slip plane zi25, and moving in a landscape
with periodic obstacles (that can be for instance precipitates in the material). These
dislocations are represented by a single phase parameter u(t,z1,z5) defined on the slip
plane x1z5. The dynamic of dislocations is then described by the evolutive version of the
Peierls-Nabarro model (see for instance [33] and [10]):

(2.3) o = Tyu(t, )] — W' (u) + o2 (t,2) in RT xRN
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for x € RY with the physical dimension N = 2. In the model, the component o2 of the
stress (evaluated on the slip plane) has been introduced to take into account the shear
stress not created by the dislocations themselves. This shear stress is created by the
presence of the periodic obstacles and the possible external applied stress on the material.

We want to identify at large scale an evolution model for the dynamics of a density of
dislocations. We consider the following rescaling

t
u(t,x) = eu (—, z) ,
€ €

where € is the ratio between the typical length scale for dislocation (of the order of
the micrometer) and the typical macroscopic length scale in mechanics (milimeter or
centimeter). With such a rescaling, we see that the number of dislocations is typically of
the order of 1/e per unit of macroscopic scale. Moreover, assuming suitable initial data

1
2.4) u(0,2) = —up(ex) on RY,
€

1.1). This indicates that at the limit ¢ — 0, we will recover a model for the dynamics of

(
(where ug is a regular bounded function), we see that the functions u¢ are solutions of
(
(renormalized) densities of dislocations.

Remark 2.1. Fractional reaction-diffusion equations of the form
(2.5) Ou=T[u] + f(u) in Rt x RY

where N > 2 and f is a bistable nonlinearity have been studied by Imbert and Souganidis
[25]. In this paper the authors show that solutions of (2.5), after properly rescaling them,
exhibit the limit evolution of an interface by (anisotropic) mean curvature motion.

Other results have been obtained by Gonzédlez and Monneau [19] for a rescaling of the
evolutive Peierls-Nabarro model in dimension N = 1. In the one dimensional space, the
limit moving interfaces are points particles interacting with forces as 1/x. The dynamics of
these particles corresponds to the classical discrete dislocation dynamics, in the particular
case of parallel straight edge dislocation lines in the same slip plane with the same Burgers’
vector. In [14], considering another rescaling of the model of particles obtained in [19],
the authors identify at large scale an evolution model for the dynamics of a density
of dislocations, that is analoguous to (1.4). In the present paper, we directly deduce
the model (1.4) at larger scale from the Peierls-Nabarro model at smaller scale in any
dimension N > 1. That way we remove the limitation to the dimension N = 1 that
appears in [19].

Finally, let us mention that in [17] and [18] Garroni and Muller study a variational
model for dislocations that is the variational formulation of the stationary Peierls-Nabarro
equation, where they derive a line tension model.

2.2. Mechanical interpretation of the homogenization. Let us briefly explain the
meaning of the homogenization result. In the macroscopic model, the function u°(¢, z)
can be interpreted as the plastic strain (localized in the slip plane {z5 = 0}). Then the
three-dimensional displacement U(t, X') is obtained as a minimizer of the elastic energy

U(t,”) = argmin (u’(t, ), U)
U

and the stress is
oc=A:e with e=e(U)—u’(t,z)d(x3)e’



Then the resolved shear stress is

The homogenized equation (1.4), i.e.
o’ = H(V,u°, T [u°(t,)])

which is the evolution equation for u°, can be interpreted as the plastic flow rule in a
model for macroscopic crystal plasticity. This is the law giving the plastic strain velocity
O’ as a function of the resolved shear stress o$2** and the dislocation density Vu°.

The typical example of such a plastic flow rule is the Orowan’s law:

H(p, L) ~ |p|L

This is also the law that we recover in dimension N = 1 in a forthcoming paper [32] in the
case where there are no obstacles (i.e. o092 = 0) and for small stress L and small density
lp|. When o{¥* # 0 with zero mean value (i.e. < o{¥* >= 0), we expect a threshold

phenomenon as in [24] (see also Norton’s law with threshold in [16])), i.e.

H(p,L)=0 1if |L| issmall enough.

This means more generally that our homogenization procedure describes correctly the me-
chanical behaviour of the stress at large scales, but keeps the memory of the microstructure
in the plastic law with possible threshold effects.

3. STRATEGIES OF THE MAIN PROOFS

3.1. Strategy for the proof of convergence.

3.1.1. The general approach. It has been already noticed that for problems periodic in
u®/€, we have to introduce twisted correctors (see for instance [23]). It is also known that
if we can claim that the limit function satisfies

(3.1) ou’ #0 or Vu'#0
then we do not have to introduce an additional dimension to perform the proof of conver-
gence. The idea (see [23]) is that we can twist the corrector either dividing by p; := 9,:u°

for some index i, or by \ := 9,u” like considering the ansatz:

t,x)—p-x :v)

“(t,2) ~ u(t,2) + 2o
u (t,x) ~u (t,z) 4+ ev ,
eA €
On the contrary, we do not know how to deal with the case where both quantities in (3.1)
vanish, except adding a dimension and considering twisted correctors in higher dimension.
Here we have to face a similar difficulty in the much more involved framework of non-local
equations. Notice also that it does not seem possible to apply the approach of Barles [6].

Therefore following the idea in [23], we consider the solution U€ of

{atw — LUt ane)] = W (L) 40 (L, 2) in R x RVH!

3.2
(3.2 U0, 2, 2n41) = uo(2) + PN41TN 41 on RNt

where py+1 # 0. We then consider the following ansatz:
t x Uz, —M—p-
U€<t,$7I‘N+1) = Uo(tax7xN+1)+€v <_’f ( - :L‘N+1) : m)

Y
€ € EPN+1
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where U°(t,z,xn41) = u°(t,7) + py1xn41. This ansatz turns out to be the good one,
and plugging this expression of U¢ into (3.2), we find formally with 7 = E, Yy="% yny =
Utz xNi1)—At—pa

PN+1€ ’

(3.3) A+ 0,V =L+TV(r,,yns1)] = W' (V +p-y+ pyviiyns1 + A7) + o(1,y),

where

A=0U°t,z,on4) = 0’ (t, ), p=V,U'(t,z,oN541) = V,u'(t, 2)
and
L=T[U° - anwm)] = Tlu’(t,-)].
Then, we expect u’ to be solution of (1.4) with H(p, L) = A(p, L). This heuristic com-

putation, that permits first of all to identify the cell problem in the higher dimensional
space, can be made rigorous through the perturbed test function method by Evans [13].

3.1.2. Additional difficulty.
Let us enter a bit more in the details of the proof. Fix Py = (to, zo, #%4;) € RT x RV*!
and define

i t x Ut —M—p-
(3.4) Us(t,z,ani1) = Utz ani1) + €V <_, z (t, 2, 2N 1) p $> 7

€€’ EPN+1
where V is solution of (3.3) with A = Q,U°(Fy), p = V,U°(Fy) and L = T, [U°(to, -, 2% 41), %o

0 — M\ —m- . . .
Cltewoni) M2 Hope we assume for simplicity that U° and

Let us call F(t,z,xn41) = o

V are smooth. The proof of convergence consists in showing that U¢ is a solution of (3.2)
in a cylinder (to —r,to+r) X B, (z9,2%,,) for r > 0 small enough, up to an error that goes
to 0 as r — 01. This will allow us to compare U¢ with U¢ and, thanks to the boundedness
of V., to conclude that U¢ converges to U° as € — 0.

When we plug U¢ into (3.2), we find the equation

A0,V = L+T[V(r,,yne)] = W (V +p-y+pyvayns + A7) +o(7,9) +0.(1) + 6y,

F(tx,zn+1)
€

0, = (atUO(PO) - 8tU0(t, 957$N+1))8y1v+1v(77?/, yN-H)

+ T {V (r Fler, 6””*”)} — TV (7, yni)l-

€

: _t _z _
with =2 y=%2 yny1 = , where

Then, U¢ will be a solution of (3.2) up to a small error if 6, = 0,(1) as r — 0+4. This
last property holds true if the corrector V satisfies: |V, |9,y.,V| < C in RT x RY¥*! for
some C' > 0, and

(3.5) )

YN+1

N+1

V(r,-,-) is Hélder continuous, uniformly in time.

In the case of the local first order equation (1.7) considered in [23], or non local equations
considered in [24], approximate correctors were only required to be Lipschitz continuous
in the additional variable. Here the additional regularity (3.5) is required because we deal
with an operator Z; whose kernel is singular.

Since in (3.3), the quantity Z,[V (7, -, yn+1)] is computed only in the y variable, we
cannot expect this kind of regularity for the correctors. Nevertheless, we are able to
construct regular approximated sub and supercorrectors, i.e., sub and supersolutions of
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approximate N + 1-dimensional cell problems, and this is enough to conclude. Finally, this
construction works for any pyy1 # 0 and to simplify the presentation we take py1 = 1.

3.2. Strategy for the construction of smooth approximate correctors. As ex-
plained in the previous subsection, in the proof of convergence we will need smooth
approximate sub and and super-correctors on RT™ x RN*! ie. for P = (p,1) € R¥*! and
L € R, sub and supersolutions of
(3.6)
A+ 0,V =L+TV(r,,yns1)] = W'(V+P-Y + A1)+ o(r,y) in Rt x RNF!
V(0,Y)=0 on RV+L,

Here and in what follows, we denote Y = (y,yny1). More precisely, we will prove the
following proposition.

Proposition 3.1 (Smooth approximate correctors). Let A\ be the constant defined by
Theorem 1.1. For any fited p € RN, P = (p,1), L € R and n > 0 small enough, there
exist real numbers N (p, L), A\, (p, L), a constant C' > 0 (independent of n, p and L) and
bounded super and subcorrectors VJr , V., i.e. respectively a super and a subsolution of

)\7:;:+6TV:I: L+Il[v ( T, 7yN+1)]

(3.7) W’(Vi +P-Y + A7) +0(1,y)Foy(1) in R x RV
VE0,Y) =0 on RNFL,
where 0 < 0,(1) = 0 as n — 0%, such that
. 1 + li L
(3.8) nggj (p, L) = i, A, (p, L) = Ap, L),

locally uniformly in (p, L), N, satisfy (i) and (ii) of Proposition 5.4 and for any (7,Y) €
R* x RV+H!

(3.9) Vi (rY) < C.
Moreover Vni are of class C? w.r.t. yny1, and for any 0 < o < 1
W// o
(3.10) —-1< 6yN+1V < — ” “
n
(311) || yN+1yN+1V:t”OO S C”]’ < 8yN+1Vi >Z7 S Cnva

Here in order to build Lipschitz sub/super correctors, it does not seem easy to apply
a kind of truncation of the Hamiltonian like in [23] or [24]. Therefore we use a different
method to build such approximate correctors (similar to the one in [15]).

The proof of Proposition 3.1 is mainly performed in two steps:
Step 1: Constructions of Lipschitz correctors.
Using the modified Cauchy problem

( 8’7‘U - L+Il[U(T7'7yN+1)] _W/(U+PY)+G(T7y)

+n {ao +infU(r,Y) = U(r, Y)} Oy U+1]  in RY x RV

U,Y) = 0 on RN+

\
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we construct Lipschitz correctors. The Lipschitz bound comes formally from the equation
satisfied by w = 9,,.,U:

YN+1 "

(0w = Tfw(ryvn) = WU+ P-Y)(w+1) = qu(n, Y)w+ 1|

+n {ao + i}I/l/fU(T, Y') = U(r, Y)} sign(Oyy, U + 1)0y,,,w in Rt x RV+!

[ w(0,Y) = 0 on RN+
and the comparison principle implies that
|W//|oo
(3.12) —1<w<
n

On the other hand we are able to show (as in [24]) that infy U(7,Y’) — U(7,Y’) remains
bounded independently on 7. Then an appropriate choice of ay large enough (resp. neg-
ative enough) provides us bounded supercorrectors I/V,;r (resp. subcorrectors W, ). We
also show using Proposition 4.7 and the bound (3.12) that we have the following Holder
estimate:

<W,F >0 < Ca
Step 2: Constructions of smooth correctors.
We make a convolution with respect to yy,1 of the Lipschitz correctors built in Step 1,
with a sequence (ps)s of mollifiers:

V;ig(t@/,QNJrl) = Wf(t,y, ) *pé(')'

Those functions are finally the smooth approximate sub/super correctors of Proposition

3.1 with some small error term o, (1) on the right hand side of the equation, for a suitable
choice § = d(n).

4. RESULTS ABOUT VISCOSITY SOLUTIONS FOR NON-LOCAL EQUATIONS

The classical notion of viscosity solution can be adapted for Hamilton-Jacobi equations
involving non-local operators, see for instance [5]. In this section we state comparison
principles, existence and regularity results for viscosity solutions of (1.1) and (1.4), that
will be used later in the proofs.

4.1. Definition of viscosity solution. We first recall the definition of viscosity solution
for a general first order non-local equation with associated initial condition:

{ut:F(t,x,u,Du,L[u]) in RT xRY

(4.1) u(0,z) = ug(x) on RV,

where F(t,z,u,p, L) is continuous and non-decreasing in L.

Definition 4.1 (r-viscosity solution). A function u € USCy(RT x RY) (resp., u €
LSCy(R* x RY)) is a r-viscosity subsolution (resp., supersolution) of (4.1) if u(0,z) <
(ug)*(z) (resp., u(0,2) > (uo)«(x)) and for any (to,z0) € RT x RN, any 7 € (0,t) and
any test function ¢ € C*RT x RY) such that u — ¢ attains a local mazimum (resp.,
minimum) at the point (to, o) on Qr)(to, zo), then we have

0rd(to, xo) — F(to, xo, u(to, xo), Vx¢(t0,$o)7111’r[¢(to, -), o] +112’T[U(t07 -), o)) <0
(resp., > 0).
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A function u € Cy(RT x RY) is a r-viscosity solution of (4.1) if it is a r-viscosity sub and
supersolution of (4.1).

It is classical that the maximum in the above definition can be supposed to be global
and this will be used later. We have also the following property, see e.g. [5]:

Proposition 4.1 (Equivalence of the definitions). Assume F(t,z,u,p, L) continuous and
non-decreasing in L. Let r > 0 and r' > 0. A function u € USCy(R* x RY) (resp.,
u € LSCy(RT x RY)) is a r-viscosity subsolution (resp., supersolution) of (4.1) if and
only if it is a r'-viscosity subsolution (resp., supersolution) of (4.1).

Because of this proposition, if we do not need to emphasize r, we will omit it when
calling viscosity sub and supersolutions.

4.2. Comparison principle and existence results. In this subsection, we successively
give comparison principles and existence results for (1.1) and (1.4). The following com-
parison theorem is shown in [29] for more general parabolic integro-PDEs.

Proposition 4.2 (Comparison Principle for (1.1)). Consider u € USCy(RT x RY) sub-
solution and v € LSCy(RT x RY) supersolution of (1.1), then u < v on RT x RV,

Following [29] it can also be proved the comparison principle for (1.1) in bounded
domains. Since we deal with a non-local equation, we need to compare the sub and the
supersolution everywhere outside the domain.

Proposition 4.3 (Comparison Principle on bounded domains for (1.1)). Let Q be a
bounded domain of RT x RN and let u € USCy(RT x RY) and v € LSCy(RT x RY) be
respectively a sub and a supersolution of

O = Ty[uc(t, )] — W' (U{) Y (E, %)

n Q. If u < wv outside 2, then u < wv in 2.

Proposition 4.4 (Existence for (1.1)). Fore > 0 there exists u® € Cp(RT x RY) (unique)
viscosity solution of (1.1). Moreover, there exists a constant C' > 0 independent of € such
that

(4.2) |u(t, x) — ug(x)| < Ct.

Proof. Adapting the argument of [22], we can construct a solution by Perron’s method
if we construct sub and supersolutions of (1.1). Since uy € W?*, the two functions
u®(t, z) := up(z)+Ct are respectively a super and a subsolution of (1.1) for any € > 0, if

C 2 DN”UO 2,00 + HW/HOO + ”O—HOO>

with Dy depending on the dimension N. By comparison we also get the estimate (4.2).
O

We next recall the comparison and the existence results for (1.4).

Proposition 4.5 ([24], Proposition 3). Let H : RY x R — R be continuous with H(p,-)
non-decreasing on R for any p € RY. If u € USCy(RT x RY) and v € LSCy(RT x RY)
are respectively a sub and a supersolution of (1.4), then u < v on RY x RY. Moreover
there exists a (unique) viscosity solution of (1.4).



14

In the next sections, we will embed the problem in the higher dimensional space
R* x R¥*! by adding a new variable 2, in the equations. We will need the follow-
ing proposition showing that sub and supersolutions of the higher dimensional problem
are also sub and supersolutions of the lower dimensional one. This in particular implies
that the comparison principle between sub and supersolutions remains true increasing the
dimension.

Proposition 4.6. Assume F(t,x,zn41,U, p, L) continuous and non-decreasing in L. Sup-
pose that U € LSCy(RT x RNTY) (resp., U € USC,(R* x RNTY)) is a viscosity superso-
lution (resp., subsolution) of

(4.3) U =F(t,z,2n1,U, DU LU, - wny1)]) in RT x RVTL
then, for any xny1 € R, U is a viscosity supersolution (resp., subsolution) of
Ut = F(t, TyTN+1, U, DxU,Il[UOf, . .CENJrl)]) in RT x RN.

Proof. Notice that in (4.3), there is no derivative with respect to x4 and no integral
with respect to dxy,i. Therefore zy,q only appears as a parameter that can (at least
formally) be frozen.

We now do the (rigorous) proof for supersolutions. Fix 2% _; € R. Let us consider a point
(to, o) € RT x RY and a smooth function ¢ : R* x RY — R such that

U(ta :C,%?er) - 90<t7 .’/U) 2 U(t07 L0, x(]JV+1> - (P(to?xo) =0 for (t,:L') S QT,T(tOu mO)?
with » = 1. We have to show that

81%0(1507 ':UO) Z F(th Lo, x?\[-g-l) U(th Lo, I?\[-}—l)) ngo(t()a '-7;0)7:[11 [SO(tO, ')a flf()]
+I12[U(t07 '>$9V+1)7'T0])‘

Without loss of generality, we can assume that the minimum is strict. For ¢ > 0 let
. : RT x R¥*! — R be defined by

1
@e(t, v, xn41) = @(t, 1) — E\$N+1 .

Let (te, ze,2%,,) be a minimum point of U — ¢, in Q. (o, zo, 2% ). Standard argu-
ments show that (¢, ze, 25,,) — (fo, Zo, 2%1) as € = 0 and that im0 U(te, 2, 25 41) =
Ulto, zo, 2%1). In particular, (t,z.,x5.) is internal to Q.. (to, o, %) for € small
enough, then we get
(4.4)

Qp(te,r) > Flte, xe, Ulte, T, 2y 41), Datp(te, xe),Ill [p(te; ), x| + Z12 [Ute, - xy11), )

By the Dominate Convergence Theorem lim, .o Z{[o(t., "), z] = Zl{p(to, "), o]; by the
Fatou’s Lemma and the convergence of U(t, z., x5 ) to Ul(to, Zo, 2%, 1), we deduce that

IIQ[U(tO’ E x[l)V-&-l)’ ZEO] < llglglfzf [U(t€7 ) I§V+1)a ZL‘E].

Then, passing to the limit in (4.4) and using the continuity and monotonicity of F', we
get the desired inequality. O
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4.3. Holder regularity. In this subsection we state a regularity result for sub and su-
persolutions of semilinear non-local equations. The proof is postponed in the appendix.

Proposition 4.7 (Hélder regularity). Assume (H1) and let g1, go € R. Suppose that
u € C(RT x RY) and bounded on RY x RY is a viscosity subsolution of

O =Tu(t, )] +qg in RF xRN
u(0,2) =0 on RV,

and a viscosity supersolution of
O =Th[u(t, )] +go in R xRY
uw(0,2) =0 on RV,

Then, for any 0 < a < 1, u € C¥RT x RY) with < u >2< C, where C' depends on

ulloo, g1 and go.

Notice that this regularity result will be used to establish a bound on the Hélder

regularity in y of 9y, +1Vni for smooth approximate correctors V,]jE that will be used in

Step 1.2 of the proof of Lemma 5.5 used in the proof of the convergence result (Theorem
1.2).

5. THE PROOF OF CONVERGENCE

This section is dedicated to the proof of Theorem 1.2. As explained in Subsection 1.3,
we imbed our problem in a higher dimensional one. We consider U¢ solution of

{atUe — LUt ave)] = W (L) 40 (L 2) in R x RVH

€ €’ e

5.1
(51 U0, z,x5+1) = uo(x) + n11 on RN*L

By Proposition 4.6 and Proposition 4.2, the comparison principle holds true for (5.1).
Then, as in the proof of Proposition 4.4, by Perron’s method we have:

Proposition 5.1 (Existence for (5.1)). For ¢ > 0 there exists U¢ € Cyp(RT x RNT)
(unique) viscosity solution of (5.1). Moreover, there exists a constant C' > 0 independent
of € such that

(52) ‘U€(t?xax1\7+l) _UO(Z’) _QfN+1’ < Ct.
Let us exhibit the link between the problem in R" and the problem in RV*1,

Lemma 5.2 (Link between the problems on RY and on R¥™). If u¢ and U® denote
respectively the solution of (1.1) and (5.1), then we have

X
Uty o) =t ) — e | 2 | <
€

(5.3) U (t,x,xNH +e€ FJ) =U(t,x,xn41) + € FJ for any a € R.
€ €

This lemma is a consequence of the comparison principle for (5.1), the invariance by
e-translations w.r.t. xn,; and the monotonicity of U¢ w.r.t. xy.1.
Let us now consider the problem

{@U = H(V,U LU, ons)]) in R x RN+

5.4
(5:4) U0, z,zn+1) = up(x) + Tyi1 on RN*L
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The link between problems (1.4) and (5.4) is given by the following lemma (analogue to
Lemma 5.2).

Lemma 5.3. Let u® and U° be respectively the solutions of (1.4) and (5.4). Then, we
have

U'(t, @, xn41) = u'(t, 2) + Ty

Lemma 5.3 is a consequence of the comparison principle for (5.4) and the invariance by
translations w.r.t. xy.y.

We need to make more precise the dependence of the real number A\ given by Theorem
1.1 on its variables. The following properties will be shown in the next section.

Proposition 5.4 (Properties of the effective Hamiltonian). Let p € RY and L € R. Let
H(p,L) be the constant defined by Theorem 1.1, then H : RN x R — R is a continuous
function with the following properties:
(i) H(p, L) — do00 as L — Fo0 for any p € RY;
(i) H(p,-) is non-decreasing on R for any p € RY;
(iii) If o(7,y) = o(7, —y) then

H(p,L) = H(-p, L);
(iv) If W'(=s) = =W'(s) and o(1, —y) = —o (T, y) then

H(p,—L)=—H(p,L).

5.1. Proof of Theorem 1.2.
Step 1: The classical approach
By (5.2), we know that the family of functions {U¢}.~ is locally bounded, then U™ :=
limsup!_,, U¢ is everywhere finite. Classically we prove that U™ is a subsolution of (5.4).
Similarly, we can prove that U~ = liminf,._,oU* is a supersolution of (5.4). Moreover
U 0,z,2n41) = U (0,2,2n41) = uo(z) + xy41. The comparison principle for (5.4),
which is an immediate consequence of Propositions 4.5 and 4.6, then implies that U™ <
U~. Since the reverse inequality U~ < U™ always holds true, we conclude that the two
functions coincide with U, the unique viscosity solution of (5.4).
By Lemmata 5.2 and 5.3, the convergence of U¢ to U° proves in particular that
converges towards u® viscosity solution of (1.4).

To prove that U™ is a subsolution of (5.4), we argue by contradiction. In what follows
we will use the notation X = (z,zx,1). We consider a test function ¢ such that UT — ¢
attains a zero maximum at (to, Xo) with o > 0 and Xy = (2o, 2%,,). Without loss of
generality we may assume that the maximum is strict and global. Suppose that there
exists @ > 0 such that

09 (to, Xo) = H(V1¢(to, Xo), Lo) + 0,
where
L= | [ (Blto.30 42,58, 6l Xo)  Vaolto, Xo) - ()
z|<1

(5.5)
! /|| 1(U+(t07x0 +a,2ly) = U™ (to, Xo))p(da).
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Step 2: Construction of ¢°
By Proposition 5.4, we know that there exists L; > 0 (that we take minimal) such that

H(V.$(to, Xo), Lo) + 0 = H(V,¢(to, Xo), Lo + L1).

By Propositions 3.1 and 5.4, we can consider a sequence L, — L; as n — 07, such that
Ay (Veo(to, Xo), Lo + Ly) = MVad(to, Xo), Lo + L1). We choose n so small that L, —
0,(1) > L1/2 > 0, where o0,(1) is defined in Proposition 3.1. Let V," be the approximate
supercorrector given by Proposition 3.1 with

p = Vx¢<t07 X0)7 L = LU + L7]
and
Ay = A (p, Lo+ Ly) = 0i(to, Xo)-

For simplicity of notations, in the following we denote V' = V,*. We consider the function
F(t,X) = ¢(t,X) —p-z — A, and as in [23] and [24] we introduce the "z ;-twisted
perturbed test function” ¢¢ defined by:

o(t, X) + €V <£ z F(t,X)> + ek in (%, 2t0) x By (Xo)

€’ e’ €

(5.6) ¢ (t, X) == {Ue(t,X) outside,

where k. € Z will be chosen later.

Step 3: Checking that ¢ is a supersolution

Step 3.1: Outside Q, . (to, zo)

We are going to prove that ¢¢ is a supersolution of (5.1) in @, ,(¢y, Xo) for some r < %
properly chosen and such that Q,,(to, Xo) C (%,2ty) x B 1 (Xo). First, remark that since
Ut — ¢ attains a strict maximum at (¢y, Xo) with Ut —¢ = 0 at ({9, Xo) and V' is bounded,
we can ensure that there exists ey = €y(r) > 0 such that for € < ¢

(5.7) U(t, X) < ¢(t, X)+¢V (ﬁ, z M) . in (%0 3t0) % By (6)\ Qn (£, 0)

€ € €

for some «, = 0,(1) > 0. Hence choosing k. = [=2*] we get U < ¢¢ outside Q,,(to, Xo).
Step 3.2: Inside Q. ,,(to,z0): ¢° tested by

Let us next study the equation. From (5.3), we deduce that Ut (t,z,zn41 + a) =
U*(t,z,xn41)+a for any a € R, from which we derive that 0, ,, F'(to, Xo) = Opy,, ¢(t0, Xo) =
1. Then, there exists ry > 0 such that the map

Id <X F: Qryry(to, Xo) — Uy,

(t,$,$N+1) — (t7x7F<t7xaxN+1>)
is a C'-diffeomorphism from Q,,,,(to, Xo) onto its range U,,. Let G : U,, — R be the
map such that

Id x G : U, — Qro.ro(to, Xo)

(tv Z, £N+1) — (tv L, G(tv Z, £N+1>>
is the inverse of Id x F. Let us introduce the variables 7 = t/e, Y = (y,yn11) with
y=x/€e and yyy1 = F(t, X)/e. Let us consider a test function 1 such that ¢ — 1 attains
a global zero minimum at (£, X) € Q,, ., (to, Xo) and define

1
FE(T7 Y) - ZW(GTa €Y, G(ETu €Y, EyN—i—l)) - ¢(€T7 €Y, G(€T7 €Y, €yN+1))] - ke'
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Then

b(t, X) = b(t, X) + eI (z % F(t’X)) + ek,

and I'¢ is a test funtion for V:

(5.8) T(7,Y)=V(F,Y) and I(7,Y)<V(r,Y) forall (e7,€Y) € Qo (to, Xo),

where 7 = t/e, § = T/, Yys1 = F({,X)/e, Y = (J,Yn.1). From Proposition 3.1, we
know that V' is Lipschitz continuous w.r.t. yy,; with Lipschitz constant M, depending
on 7. This implies that

(5.9) E

YN+1

(7, Y)| < M,.
Simple computations yield with P = (p,1) € RV*L:

(5.00) 4 N1 TOLEY) = 0@ X) + (148, [(7.Y) (idlto, Xo) — 06 (F, X)),
' A+F+P Y+ V(FY) =205 g

Using (5.10) and (5.9), Equation (3.7) yields for any p > 0
Op(t, X) +0,(1) = Lo+ Ly + I 07, Gy 42) T+ L VT, B 4a) 3

(5.11) o (@) Y (f, §) —o,(1).

€

With the following lemma (which will be proved in the next subsection), we make rigorous
the heuristic computations done in Subsection 3.1.2 to estimate the error when plugging
(3.4) in (3.2).

Lemma 5.5. (Supersolution property for ¢°)
For e < ey(r) <r <ro, we have

O, X) > I [W(E, - Tni), 7] + I [6°(F, -, Tnga), T
—w (M) ‘o <f, ?) —oy(1) + on(1) + Ly.

€ € €
Let r < 79 be so small that o,(1) > —L; /4. Then, recalling that L, —o,(1) > L;/2, for

€ < eo(r) we have

¢(t, 7))

€

O, X) > I [V, Tnea), T) + 7 [6°(E, -, Tnn), T] — W (

(E E) Ly
+ol|l-,—|+—,
€ € 4

and therefore ¢¢ is a supersolution of (5.1) in Q,.,(¢y, Xo).
Step 4: Conclusion
Since U¢ < ¢ outside Q,.,-(to, Xo), by the comparison principle, Proposition 4.3, we con-

clude that U(t,X) < ¢(t, X) + €V< g FEX) ) + ek, in Q. (to, Xo) and we obtain the

desired contradiction by passing to the upper limit as ¢ — 0 at (to, Xy) using the fact
that U+(t0,XQ) = ¢(t0, Xo) 0 < —Vr-
This ends the proof of Theorem 1.2.
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5.2. Proof of Lemma 5.5. The result will follow from (5.11) and the following inequality

LO + 1'11,/?[116(?’ '7@N+1)7y} +If7ﬂ[v(?7 ')@N—&-l)?y]
(5.12)
> I [§(F, - Fvsn). 7] + T2 [6°(F - Fvsn) T + 0,(1)

To show the result, we proceed in several steps. In what follows, we denote by C' various
positive constants independent of e. We start to call

Ly= /| (¢(to, To + , 2% 1) — ¢(to, Xo) — V(to, Xo) - 2)p(dx),
z|<1

lg:/}5wam%+m@%g—vwmxamwm.
x|>

Then, recalling the definition (5.5) of Lo, we can write

(5.13) Lo= Ly + L.

Keep in mind that gy, = F(i’y). Since (t, X) = o(t, X) + el* (f, z F(Z’X)> + ek, we
have

(5.14) 0 [V, Tng), 7] = L+ I,

where

et T4z FET+zTni )\  1e(= Vv
I, = / 6 ( r (e’ e € ) r (T7Y) L )u(dx),
jz|<1 g - X)-

I = /|<1 (0(6,T + 2, Ty1) — ¢(8, X) — Vo(t, X) - x) p(dz).

\

In order to show (5.12), we show successively in Steps 1, 2 and 3:

L <TVPDF,  Gned) U + T V(T ), 9] + 0p(1) + Cep
_[2 S L(l) + Or(]-)

P [¢°(F, -, Tne), 7] < L2+ 0.(1)

Because the expressions are non linear and non local and with a singular kernel, there
is no simple computation and we have to carefully check those inequalities sometimes
splitting terms in easier parts to estimate.

Step 1: We can choose ¢y so small that for any € < ¢y and any p > 0 small enough

[1 S Ill’p[FG(Fa '7@N+1)7g] + If’p[V(?, '7@N+1)7§] + OT(l) + Oép

Take p > 0, 0 > p small and R > 0 large and such that eR < 1. Since g is even, we can
write

L=+ +1}+1
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where
0 ftT+x FT,T+2,Tng) I oz
L= el - , —I(7,Y) -V, I7,Y) -
|lz|<ep € € € €
_ayN+1F€(?7 ?>V$F(t7X) ' E) lu’(d:L‘),
€
t T Fit,z T _
[11_/ 6<F€ (_7x+m, (,x+x,mN+1))_Fe(iy)) (de).
ep<|z|<ed € € €
t T F(t,x _
[]?:/‘ G(FG <_’x+x’ (7.T+ZE,I'N+1)> —FG(F’Y)) /,L(daj‘)’
ed<|z|<eR € € €
tz F(t,z T _
If’:/ e(l“e (_’x+a:’ ( ,:U+x,xzv+1)> _Fg(iy)) (d),
eR<|z|<1 € € €
Moreover
I%,p[v<?’ '7?N+1)7y] - Jl + J2 + J37
where

Jl = / (V(?7y+ zayN—i-l) - V(?a ?)),u(dz),
p<|z|<d

h= [ VETE s Ta) - VET)A:)
0<|z|I<R

h:/‘<Wa@mgmn—Waﬁmwn
|z|>R

STEP 1.1: Estimate of I? and Z,”[T*(%, -, Jn1), 7).
Since I'¢ is of class C?, we have
(515) ‘I?‘7 ‘Ill,p[re(?a '7@N+1)7y” S C€p7

where C, depends on the second derivatives of ['*. Remark that if we knew that V is
smooth in y too, we could choose p = 0.

STEP 1.2 Estimate of I} — J;.
Using (5.8) and the fact that g is even, we can estimate I — J; as follows

F,T+e27 Fi,7
I%—Jlg/ {V(F,wz, (’“62’”“))—V<F,§+z, <’x)>}u(d2)
p<|z|<é

€ €

F(t,z T F(t,z
:/ {[V (?,y+z, (’HEZ’IN“))—V(?,%,Z, (’x))
p<|z|<é € €

_ayN-HV <?7y+ Z, F(t,X)) VIF(E, 7) ) Z}
€

+ [824N+1V(F:y + ZayN—i-l) - a’yN+1V<F7 Y)] VxF(%a Y) ’ Z} N(dz)'
Next, using (3.10) and (3.11), we get

(5.16) o< c/ (22 + o[ u(dz) < Co°.
|z|<é

STEP 1.3 Estimate of I? — Js.
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If M, is the Lipschitz constant of V' w.r.t. yy41, then

F(t,x x F(t, X
If—bs/ (V(?,wz, (’Hez’xN*l))—V(?,wz, g )))M(dz)
§<|z|<R € €

Ft,7+ex,onn)  F(, X)

< M, u(dz
! 5<|z|<R € € ‘ (@)
< Mn sup |VZF(Z,T+ EznyJrl)HZLLL(dz)'
§<|z|<R |z|I<R
Then
(5.17) I} —Jy, <C sup |V F(t,T + ez, Tn11)|log(R/6)
l2|<R

STEP 1.4: Estimate of I} and Js.
Since V is uniformly bounded on R* x R¥*! we have

F(t,z T —
k< / (v (?,ng , FTH 62’”*”) V(T Y)) u(dz)
R<|z|< ¢

€

(5.18) o
< 2||vlloopu(dz) < =
/|z>R R
Similarly
C
(5.19) |J5] < =

Now, from (5.15), (5.16), (5.17), (5.18) and (5.19), we infer that
L STPT S Ung)s U+ IV (T, ), U 4 2Cep + C6°

" R C
+ C sup |VzF(t,f + 6Z,TN+1)| log (_) + =,
lz|[<R ) R

We choose R = R(r) such R — 400 as r — 0%, ¢g = ¢(r) such that Reg(r) < r and
= d(r) > 0 such that 6 — 0 asr — 07 and rlog(R/J) — 0 as r — 07. With this choice,
for any € < ¢y and any p < 9

Co* + C sup |V, F(t,T + ez, Tn1)|log (E) + ¢ =o0.(1) asr— 0%,
|5|<R 0 R

and Step 1 is proved.
Step 2: I, < L} +o.(1).
For 0 < v < 1 we can split I and L] as follows

I2 - /|< <¢<E,T+ ZE,TN+1) - ¢(z, 7) - V(b(%v 7) ’ x):u(dx>
* /<| |<1(¢(z7j + $,f]\]+1) - ¢(Z,7))M(dw) = [21 + 122’
Lo= /||< (¢(to, zo + @, 2 41) — O(to, Xo) — V(to, Xo) - ) p(de)

+/ y (¢(to, 20 + 2, 3% 1) — B(to, Xo))p(dx) = Ty + T.
v<|z|<1
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Since ¢ is of class C* we have

L, Ty <Cu.
Using the Lipschitz continuity of ¢ we get

T, = / Cru(dr) < o
v<lz|<1 v

Hence, Step 2 follows choosing v = v(r) such that v — 0 and r/v — 0 as r — 0%,
Step 3: I [¢°(F, -, Tn11), T) < L+ o (1).
Remark that

Ut T+a, Tnsr) =01, X)—€eV(T,Y)—eke < U™ (to, zo+2, 2311) — d(to, Xo)+0c(1)+0,(1).
Then, recalling that ¢(to, Xo) = U™ (to, Xo), for € < €y we get
P [6°(F, - Tne), 7] — Lg < o (1)

and Step 3 is proved.
Finally (5.13), (5.14), Steps 1, 2 and 3 give

1-1171 [w(zv '7EN+1)7f] + -’Z‘-1271 [¢E(%7 '>EN+1)7E] < Ill’p[re(?a '7@N+1)7§] + If’p[V(?’ '7@N+1)7@]
+ Lo + OT(l) + Cep
from which, using inequality (5.11) and letting p — 0%, we get for € < ¢

at¢(f77) Z Ill’l [1/}@’ '7EN+1>aE} +Il2’1 [qbe(a '7EN+1)7E} - W/ (M) +to (za %)
—o0,(1) +0,(1) + L,

and this concludes the proof of the lemma. O

6. BUILDING OF LIPSCHITZ SUB AND SUPERCORRECTORS

In this section we construct bounded sub and supersolutions of (3.6) that are Lipschitz
w.r.t. ynvi1. As a byproduct, we will prove Theorem 1.1 and Proposition 5.4.

Proposition 6.1 (Lipschitz continuous sub and supercorrectors). Let A be the quantity
defined by Theorem 1.1. Then, for any fired p € RN, P = (p,1), L € R and n > 0 small
enough, there exist real numbers N} (p, L), A, (p, L), a constant C' > 0 (independent of
n, p and L) and bounded super and subcorrectors W,;F, W, i.e. respectively a super and a
subsolution of (3.6) (with respectively A} and A in place of \) such that
lim A\7(p, L) = lim A (p, L) = A(p, L),
n—0t

n—07+ K
A, satisfy (i) and (i) of Proposition 5.4 and for any (7,Y) € RT x R¥*!
(6.1) (W (r,Y)| < C.

Moreover I/Vni are Lipschitz continuous w.r.t. yny+1 and a-Hélder continuous w.r.t. y for
any 0 < o < 1, with

Wl/ .
(6.2) —1 <8y, W, < W7 ,
n
+ @
(6.3) < W, >y<Cy
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In order to prove the proposition, for n > 0, ag, L € R, p € RY and P = (p, 1), we
introduce the problem
0.U=L+TU(r,,yns1)] =W U+ P-Y)+o(r,y)
(6.4) +nlao + infy U(7,Y") = U(7,Y)]|0yy,, U + 1 in RT x RV+1
U0,Y)=0 on RN+,
We have the following result whose proof is postponed to the Appendix (Section 8).

Proposition 6.2 (Comparison principle for (6.4)). Let Uy € USCy(RT x RY*1) and
Uy € LSCy(RT x RNTY) be respectively a viscosity subsolution and supersolution of (6.4),
then Uy < Uy on RT x RN*L,

6.1. Lipschitz regularity.

Proposition 6.3 (Lipschitz continuity in yni1). Supposen > 0. Let U, € Cyp(RT x RN 1)
be the viscosity solution of (6.4). Then U, is Lipschitz continuous w.r.t. yny1 and for
almost every (1,Y) € RY x RNF!

Il
N n
For a formal argument, we refer the reader to Step 1 of Subsection 3.2.

(6.5) ~1<9

YN+1

Uy(1,Y)

Proof. Let us define U(7,Y) = U(7,Y) + yn+1, then U satisfies
(6.6)
8’7‘U =L +I1[U(T’ " yN-l-l)] - W/(U +p- y) + U(Tv y)

~ ~

+nlag + infy (U(r,Y') = yy1) = (U1, Y) = yns1)|0yy, U] in R x RN

~

U(O, Y) = YN+1 on RNJrl.
We are going to prove that U is Lipschitz continuous w.r.t. yy.1 with
= Wl
0< 0y, U(1,Y) <1+ —r—.
Ui

By comparison, U(t,y,yNH) < ﬁ(t,y,yNH + h) for h > 0, from which immediately
follows that O U| by 0y,.,U in (6.6).

v U > 0. In particular we can replace |0y, ,,
U< 1—1—%. We argue by contradiction by assuming that

N+1

Let us now show that 9,

for some T" > 0 the supremum of the function (7(7, v, yN+1)—(7(T, Y, 2n+1) — K |yni1—2n 1]
on [0,T] x RN*! is strictly positive as soon as K > 1 + % Then for 4, 8 > 0 small
enough, M defined by

()]0, T] xRN T—r71
YN+1-*N+1€R

o~ AN 6
M= max <U(Tuy7yN+1) —U(1,y, 2n+1) — Klyns1 — znia| — BY(Y) — ) ;

where 1 is defined as the function 15 in the proof of Proposition 4.7, is positive. For j > 0
let

M; = max. <U<TayayN+l) —U(s,z,2nv41) — Klyn1 — 2n41| — BY(Y)
7,s€[0,T],y,z€R
YN+1:2N+1€ER

J

T — gl —sf? —j|y—z|2> )
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and let (77,17, yfVH, s9 2, Z?VH) € ([0, 7] x ]RNJfl)Q be a point where M; is attained. Clas-
sical arguments show that M; — M, (77,47, y\ 1,7, 27, 25 1) = (T, 0, Uns1:7> U, ZN+1)
as j — +oo, where (7,7, Yn,1, Zn+1) is a point where M is attained.

Remark that 0 < 7 < T, moreover, since ﬁ(?,@,@NH) > ﬁ(?,@,?NH) and U is
nondecreasing in yy.y1, it is

(6.7) UN+1 > ZN+1-

In particular y{VH #+ zf\,ﬂ and 0 < s, 7; < T for j large enough. Hence, for r > 0, we
obtain the following viscosity inequalities

(T—Tj)z +.](.7 8])
S L + CNjT + 5111’T[¢('» yg\/+1)> yj] +I127r[[7(7—ja ) yg\url)a yj]
68 WOy ) + ) + o () + nfao + inf (T (7, Y') = i)

J J
—~ . . ) . Y — L
— (U9, yn4) = Ynga)] KM + B0y (W yni) | 5
YN+ — 2Nl
and
3t = s;)
g 2L ONIrHTTIO ).2 - WOE 2 ) 4y ) + o))
' J J
+ 77[@0 + 1$£<U(Sj7 Y/) - y;\H—l) - (U(Sja ZJ» Z?V—i—l) - Z?V—i—l)]KHa
YN+1 ZN+1’
where Cy is a constant depending on N. Since (77,1’ ,yf\, 1) s, 2, ng +1) is a maximum
point, we have
U(Tju yj + Z, y{\/’—i—l) - U(Tja ij y{\H—l) S U<Sj7 Zj + z, Z?V—i—l) - U(Sja Zja Z{V—&-l)
+ B + 2, yhn) — VW Yh)]
for any x € RY, which implies that for any r > 0
IO ) ) STUGS 2 g0), 271+ BT (w7
Hence, subtracting (6.8) with (6.9), sending » — 0% and then j — 400, we get
1) _ _ ~ _ ~ _
e BLY (- Ini1), 9 + WU F G, Zv) +p-7) = W(U(T, 7. Yn41) T2 9)
S S _ - YNt+1 — EN+1
— U, 0. Yns1) —UT Y, Zn41) — Unga — ZN+1)]K%
[Unt1 — Zn+1
+ B0y 1, V(U Yny1)nla0 + i{/l,f<U(?v Y') = yni1) — (UT0,0n41) — Tns1)]

< W7o U(

Nt1) — l/j(?a U, Zn+1)|
) _

ml

7y7
~

_ Yy — ZN+1
— Kn[U(7, 7, Jn1 LTI 4 BC

UT, ¥, Zv11) — Uny1 — Zn11)] = -
Yns1 — 2Nl

Then, using (6.7) and that K|Jy., — Zns1] < U(T, 7, Uns1) — U, 7, Zn41), for 4 small
enough, we finally obtain
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~

(W oo +1 = nK) (U (7,5, Gnv21) — U7, 7,2 11)) > 0,

which is a contradiction for K > 1 + % O

6.2. Ergodicity.

Proposition 6.4 (Ergodic properties). There exists a unique A\, = \,(p, L) such that the
viscosity solution U, € Cp(RT x RN*1) of (6.4) with n > 0, satisfies:

(6.10) U (7,Y) = \,7| < C3 forall 7 >0, Y € RN*
with Cs independent of n. Moreover
(6.11) L= |Wloe = llollee +mao < Ay < L+ [Wleo + [[o]loc + nao.
Proof. For simplicity of notations, in what follows we denote U = U,, and A = \,,.

To prove the proposition we follow the proof of the analogue result in [24]. We proceed
in three steps.
Step 1: existence The functions W (r,Y) = C*r and W~ (7,Y) = C~7, where

CF = L£||Wlo % [lo]loc + nao,

are respectively sub and supersolution of (6.4). Then the existence of a unique solution
of (6.4) follows from Perron’s method.

Step 2: control of the oscillations w.r.t. space.

We want to prove that there exists C; > 0 such that

(6.12) \U(r,Y)—=U(1,2)| < C, forallT>0,Y,Z € RVtL

STEP 2.1. For a given k € ZN*! weset P-k =1+ «a, with [ € Z and a € [0,1). The
function U(7,Y) = U(1,Y + k) + « is still a solution of (6.4), with U(0,Y") = a Moreover

UO0,Y)=0<U(0,Y)=a<1=U(0,Y)+1.

Then from the comparison principle for (6.4) and invariance by integer translations we
deduce for all 7 > 0:

(6.13) \U(r,Y + k) —=U(1,Y)| <1.
STEP 2.2. We proceed as in [24] by considering the functions
M(r):= sup U(1,Y), m(r):= inf U(1,Y),

YeRN+1 YeRN+1

q(t) :== M(7) —m(1) = osc U(r,-).

Let us assume that the extrema defining these functions are attained: M(7) = U(7,Y7),
m(r) =U(r,Z7).
It is easy to see that M (7) and m(7) satisfy in the viscosity sense

aTM <L +‘,Z’.12[U(7_7 '7yTN+1>7 yT] - W/<M + P YT) + 0(7_7 yT) + 77[@0 + m(T) - M(T)]7

Oym > L+ THU(T, -, 24 11), 27 = W/ (m+ P - Z7) + o(r, 27) + naq.
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Then ¢ satisfies in the viscosity sense
aTq < I%[U(T7 E y}\/’+1)7 yT] - II2[U(7—7 K 217;/+1>7 ZT] - W/(M +P- YT)
+ W/(m +P- ZT) + 0-(7—7 yT> - U(T7 ZT)
STUT - yrs) ¥ = U 250)s 27] 4+ 2[[W oo + 2(0 | oo

Let us estimate the quantity £(7) := ZZ[U(7, -, Y1), y") =L [U (7, -, 2% 11), 27| from above
by a function of ¢. Let us define k™ € ZV*! such that Y7 — (Z7 +£7) € [0, 1)¥*! and let
Z7 := 7" + k7. Using successively (6.13) and the first inequality in (6.5), we obtain:

£ir) < /| UG ) Ul Y utds)
- /| T 42 R~ UG 2 ) 47
< / (Ury™ + 2, 4%1) — U(r, YT)u(dz)
|z]>1

- /| (T ) Ul Z7)d) 20
zZ|>

where 71 = Huo\|L1(RN\B~1(O)). Now, let us introduce ¢™ = yT;“gT and 07 = —yT;ET € [0, %)N SO
that y™ = ¢ + 07 and 27 = ¢ — 0". Hence

L) <t [ (U 48R - U Y )a(d:)

|z|>1

- /| U )~ UG 2 ld)
z|>1
<ot [ U k) - U Yol - )
[z—67|>1
—/ (U(, cT—l—z,y,TVH) —U(1, Z7))po(z + 07)dz
[z467|>1

<2 - / (U(r,Y") = U(7, Z7)) min{puo(z — 07), po(z + 87) }dz
{|2=67|>13n{|2467|>1}

< 271 — coq(7)
where ¢ > 0. We conclude that ¢ satisfies in the viscosity sense
0-q(7) < 2[W[|o + 2llo |0 + 27 — cog(7),

with ¢(0) = 0, from which we obtain (6.12).

If the extrema are not attained, it suffices to consider for § > 0, Ms(7) := supy cpn: (U(7,Y)—
BY(Y)), ma(r) = infy cpn+1 (U(7,Y) 4+ B(Y)), and ¢(7) := Mps(7) — mg(7), where ¢ is
defined as the function ¢ in the proof of Proposition 4.7. By the properties of ¢, Mz(7)
and mg(7) are attained. Then, the previous argument shows that

qs S Cl + Oﬁ?
and passing to the limit as § — 07 we get (6.12).
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Step 3: control of the oscillations in time. We follow [24] by introducing the two
quantities:

T - T -
AT(T) = sup Ulr+T,0) ~ U(r,0) and A (T) := inf Ulr+T,0) ~ U(r, 0>,
>0 T 7>0 T

and proving that they have a common limit as T — +oo. First let us estimate A1 (7))
from above. The function UT(¢,Y) := U(7,0) + Cy + C*t, is a supersolution of (6.4) if
Ct =L+ |[[W|s + o]l + nag. Since UT(0,Y) > U(7,Y) if Cy is as in (6.12), by the
comparison principle for (6.4) in the time interval [, T + 79}, for any 79 > 0 and ¢ € [0, 7o)
we get

(6.14) Ut +tY)<U(r,0)+C, + Ctt.
Similarly
(6.15) Ulr+t,Y)>U(r,0) — C, + Ct,

where C~ = L — |||l — ||o]|sc + nao. We then obtain for 7o =¢ =T and y = 0:
/ Cl - + / Cl
(6.16) L—[[Wlloc = llolloo+na0——= < A(T) < A(T) < LAW oo+l o +m00 + =
By definition of A*(T'), for any ¢ > 0, there exist 7% > 0 such that
+ (et
Ul —|—T,()% U(r+,0) <5

Let us consider v, 5 € [0,1) such that 77 —7" =8 =k € Z,and U(7",0)=U (7" —k,0)+a €
Z. From (6.12) we have

UrH,Y) < U, 0)+ C, <U(rH —k,Y) +2C, + (U(r+,0) = U(r — k,0))
<UFt =k Y)+2[C] + (U(+,0) = U(r" = k,0) + ).

Since o(-,y) and W’'(-) are Z-periodic, the comparison principle for (6.4) on the time
interval 7, 7" 4 T implies that:

Urt+T,Y)<UF " —k+T,Y)+2[Ci]+U(",0) = U(rt — k,0) + 1.
Choosing Y = 0 in the previous inequality we get
Ut +T,0)—-U(r",0) < Ut —k+T,0)—U(rT —k,0)+2[C] + 1
=U(r"+p+T,0)-U(r +3,0)+2[C] + 1,
and setting t = f and 7 =7~ + 7T in (6.14) and 7 = 7~ in (6.15) we finally obtain:
TANT) <TA(T) +4[C1] + 1+ 2[|[W']|eo + 2|0 |00 + 26T
Since this is true for any ¢ > 0, we conclude that:
< 4O+ 14 2[W oo + 2|0l
- T
Now arguing as in [23] and [24], we conclude that there exist limp_, oo A*(T) =: A and
4[C ] 4+ 14 2[[W || se + 2[00
T )

XE(T)

IA(T) = A~(T)]

ME(T) = A <

which implies that
\U(T,0) — XT| < A4[C1] + 1+ 2[|[W||s0 + 2|0 |0,



28

and then, using (6.12) we get (6.10). The uniqueness of A follows from (6.10). Finally,
(6.11) is obtained from (6.16) as 7" — +o0. O

6.3. Proof of Theorem 1.1. Let us consider the viscosity solution of (6.4) for n = 0.
By Proposition 6.4 we know that there exists a unique A such that U(7,Y)/7 converges
to A as 7 goes to +oo for any Y € RN*L. Moreover, by Proposition 4.6, U(7,y,0) is
viscosity solution of (1.6). Hence, the theorem follows immediately from the uniqueness
of the viscosity solution of (1.6).

6.4. Proof of Proposition 6.1.
Step 1: Definition of W
Let us denote by U. the solution of (6.4) with ag = Cy, where C) is defined as in

(6.12), and by U, the solution of (6.4) with ag = 0. Let A} = lim,, U"+(TT’Y)
U, (1,Y)

and

Now, we set

; the existence of )\f; and A, is guaranteed by Proposition 6.4.

+ It +

W, Y) =U" (1Y) = A\)T
and

W, (1Y) :=U, (1,Y) =\ T.
Step 2: Limits of ;-
By stability (see e.g. [7]), for n — 0% the sequence (U,"), converges to U solution of
(6.4) with n = 0. Moreover by (6.11) the sequence (A), is bounded. Take a subsequence
Nn — 0 as n — 400 such that /\j{n — Ao a8 n — +00. We want to show that A, = A,
where A = lim, UrY) By the proof of Theorem 1.1, we know that A is the same
quantity defined in Theorem 1.1. Using (6.10), we get

Ut (r,0)]  |UF(r,0
\A—AOO\S‘A—U(T’O)’Jr‘U(T’O)— T )’+‘ (T )—A;n + A = Al
T T T
U (7,0
S‘)\_U(T,O) +‘U<T,o>_ (T >’+%+‘A;_M
T T T T

where C3 does not depend on n. Then, passing to the limit first as n — +o00 and then as
7 — +00, we obtain that A\ = A.. This implies that A" — X as n — 0.

The same argument shows that A\,” — A as n — 0.
Step 3: I/Vn+ and W, are respectively sub and supersolutions
Since by (6.12), Co+infy: US(1,Y")=U(7,Y) > 0, W, is supersolution of (3.6) with A =
A, Moreover, by (6.10), W, is bounded on R* x RN uniformly w.r.t. n: [W;F(7,Y)| <
Cs for all (1,Y) € RT x RVFL
Step 4: regularity properties of Wf

W < W0 This

By (6.5), W, is Lipschitz continuous w.r.t. yyi1 and —1 < 9, ;

N+1
implies that W; is also a viscosity subsolution of

(6.17)
AN+ 0.V =L+ V(T ynve)| =WV +NT+P-Y)+0(r,y)
+C1([[W | +m) in Rt x RN+
V(0,Y)=0 on RV+L,
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By Proposition 4.6, W, is supersolution of (3.6) and subsolution of (6.17) in R* x RY
for any yy+1 € R. Then by Proposition 4.7, W,;r is of class C* w.r.t. y uniformly in yyi1
and 7, for any 0 < a < 1.

Similar arguments show that W~ is subsolution of (3.6) with A = A", is bounded on
R* x RN*!, Lipschitz continuous w.r.t. yyiq with —1 <9, W, < % and Holder
continuous w.r.t. y. This concludes the proof of Proposition 6.1.

6.5. Proof of Proposition 5.4. The continuity of H(p, L) follows from stability of vis-
cosity solutions of (1.6) (see e.g. [7]) and from (6.10). Indeed, let (p,, L,) be a sequence
converging to (po, Lo) as n — +o00 and set A, = A(pn, L), n > 0. By (6.10), we have for
any 7 > 0

wy(T,Y)
T

<G

T

An —

Stability of viscosity solutions of (1.6) implies that w,, converges locally uniformly in (7, y)
to a function wy which is a solution of (1.6) with (p, L) = (po, Lo). This implies that
limsup,,_, o [An — Ao| < % for any 7 > 0. Hence, we conclude that lim,,_, ;. A, = Ao.

Property (i) is an immediate consequence of (6.11).

The monotonicity in L of H(p, L) comes from the comparison principle.

Let us show (iii). Let v be the solution of (1.5) and A = A(p, L). Set v(7,y) := v(1, —y).
Remark that Z, [o(7,-),y] = Zi|v(7, ), —yl. If o(7,-) is even then v satisfies

A+ 0,0 =T[0(t, ),y + L—-W @+ M—p-y)+o(r,y) in RF xRY
v(0,y) =0 on RN,
By the uniqueness of A\ we deduce that A(L,p) = A(L, —p), i.e. (iii).

Finally let us turn to (iv). Define v(7,y) := —v(r,—y). If W’(:) and o(7, ) are odd
functions, v satisfies

A+ 0,0 =L [o(r,"),y) —L—W'{@® =X +p-y)+o(r,y) in RFxRY
v(0,y) =0 on RV,

As before, we conclude that \(—L,p) = —A(L,p), i.e. (iv).

7. SMOOTH APPROXIMATE CORRECTORS

In this section, we prove the existence of approximate correctors that are smooth w.r.t.
yn+1, namely Proposition 3.1. We first need the following lemma:

Lemma 7.1. Let uj,us € Co(RT x RY) be viscosity subsolutions (resp., supersolutions)
of (3.6) in RT x RY, then uy + uy is viscosity subsolution (resp., supersolution) of

N+ 0,0 = 2L + Tafo] — W(us + P-Y + A7)
—W'ug + P-Y + A1) + 20(7,y) in RT x RY
v(0,y) =0 on RV,

For the proof see Lemma 5.8 in [8].
Next, let us consider a positive smooth function p : R — R, with support in B;(0)
and mass 1. We define a sequence of mollifiers (ps)s by ps(s) = 50 (%), s € R. Let W'
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resp. W,") be the Lipschitz supersolution (resp. subsolution) of (3.6) with A = A" (resp.
A=), ), whose existence is guaranteed by Proposition 6.1. We define

(7.1) Vst oy yn) = Wikt y, o) = ps() /W (t,y,2)ps(yn+1 — z)dz.

Lemma 7.2. The functions Vn”:; and V.5 are respectively super and subsolution of
(7.2)
AE4+ 0.V 5 = L+ T[V5(r, yvea)] + o(7,y)
— oW (WE(T,y,2) +p-y+ 2+ AT)ps(ynsr — 2)dz in RT x RNVH!
Vni((], Y) =0 on RN+1,

Proof We prove the lemma for supersolutions. Let Q5 = e + [—h/2,h/2), ps(e,h) =
er ps(y)dy and

Ih(TayayN+1) = Z W;_(Tvy7yN+1 - G)ﬁ(;(e, h)

echZ

The function [, is a discretization of the convolution integral and by classical results,
converges uniformly to Vnt; as h — 0. By Proposition 4.6, VV;r is a viscosity supersolution
of (3.6) also in RT x RY. Then, by Lemma 7.1, for any yny1 € R, In(7,y,yns1) is a
supersolution of

A+ 0.V =L+ L[VI(r, yni) +0(1,9) Deenz Psles h)
=2 ez W W (T, 9, yns1 — €)
+p -y + (yn+1 — €) + A 7)ps(e, ) in R* x RV
V(0,y) =0 on RV,

Using the stability result for viscosity solution of non-local equations, see [7], we conclude
that V' is supersolution of (7.2) in RT x RY and hence also in R* x RV*!, O

7 1. Proof of Proposition 3.1. We first show that the functions V 's and V, 5. defined
n (7.1), are respectively super and subsolution of
(7.3)
Xe+ 0.V = L+ TV (7, ynn) = W/(Vo5 + P Y + A7)
+o(7,y)FChs in Rt x RV+!
VE0,Y) =0 on RN+
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where C) 5 = [|[W" oo (26||W"||o/n + 9). Using (6.2) and the properties of the mollifiers,
we get

|W/(‘/’V]%5(7-7 Y, Z/N+1) +p-y+tyns:r + )\1:;:7'>

- / W/(W$<T7y7 Z) +p- ) +z+ AniT)p(S(y]\H_l — Z)dZ
R

< / ’W/(‘/::(S(Tv yvyN—l-l) +p-y+yns + )\iT)
R

- W/(W;t(T,y,Z) +pry+z+ A,:;:T)‘ p§(yN+1 — Z)dZ

< HW”HOO/ Vo5 (T y ynva) = W (1, y, 2) | + lywer — 2] ps(ynsr — 2)dz
R

< HW”HOO/R [/R (W5 (7, y, ) = W (1,y, 2)| ps(yvaa — 7)dr + lynsr — ZI] ps(yn41 — 2)dz

I/I/'//oO
<l [ | [ IV e 1 s s — ) + Ly — 21| psumas — 2)dz
R ‘yN+1—T‘§(S 77

Wl/ .
< W7 / [” e (1yais — ol 4+ 6) + s — z|] ps(ynss — 2)dz
lyn1—2|<8 n

W// .
< w7 (2611 )

From this estimate and Lemma 7.2, we deduce that V,;;; and V, 5 are respectively super and
subsolution of (7.3). Now, we choose § = 6(n) such that [|W”||o(20||W"|s/n+0) = 0,(1)
as 1 — 0 and define

Vni(T, Y):= an;;(n) (1,Y).

Then the functions Vf are the desired super and subcorrectors. Indeed, we have already
shown that they are super and subsolution of (3.7) with A} and A, satisfying (3.8).
Properties (i) and (ii) of Proposition 5.4 can be shown as in the proof of the proposition.
Finally, (3.9), (3.10) and (3.11) easily follow from (6.1), (6.2), (6.3) and the properties of
the mollifiers. O

8. APPENDIX

Proof of Proposition 4.7

Heuristic arguments

Before entering in the proof, let us start with an heuristic explanation. Indeed, replacing
dyu by u, we should get a similar result for a stationary solution of

Liful + g2 <u<Tul + ¢
At a point (z,y), with x # y, of supremum of
u(z) —uly) — Klz —y|*
we have for r > 0

u(z) < g1+ K[| - —y|* 2] + I [u, ]

u<y) > g2 — K"le’THm - _|a,y] +1-12’T[u7y]
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Setting e = ﬁ, ©va(z) = |2z|* and using the homogeneity of the functions, we get for

r=olr—yl

Ill’r[| =yl ) = e —y|* e = Ill’r[|x — % y] with —¢f = Ill’a[gpa, e]

« «

Therefore we get
u(x) = uly) = Klz —y* < g1 — g = Ko = y|* = 2Kz — y|* 7' + I [u, 2] — I7"[u, y]
By the maximal property of (z,y), for any z € RY we have

w(@+2) —u(y +2) <u(r) - u(y)
which implies that
T u,x] — T u,y] <0
We conclude that
u(@) —uly) — Klz —y|* < g1 — go — K|z —y|* = 2Kz — y|* 7],

(e}

We can show that ¢7 > 0, for o small enough and then an optimization on |z — y| shows
that for K large enough, the right hand side is negative. This shows the Holder estimate.
It turns out that the condition ¢ > 0 is not satisfied for large values of o.
Rigorous proof
We use standard techniques from the theory of regularity of viscosity solutions of uniformly
elliptic second-order local operators, see [28], adapted to our context.
We argue by contradiction, assuming that u does not belong to C%(R* x RY). Let u®
and u . be respectively the double-parameters sup and inf convolution of v in RT x RY
ie.

/ 1 1
u®e€ t,l‘ = su u( s, — —|r—= 2 t—32 7
( ) (s,y)eRngN ( ( y) 2€| y| 26/( ) )
(t,7) inf (5.0) + e — P + (- )2
UE E/ 7,7; = 111 u S, x o L _ S '
’ (s,y)ERT xRN y e Yy 2¢!

Then u*¢ is semiconvex and is a subsolution of

Ot = T[u (t,)] + g1 in (to,+00) x RY
and u. is semiconcave and is a supersolution of

Otte = Ti[uce(t,)] + g2 in  (te,+00) x RY,

where to — 0 as € — 0, see e.g. Proposition II1.2 in [5].
Since w is not Holder continuous in z, there exists o € (0,1) such that for any K > 0
and €,¢ > 0

sup ue (t, 1) — Uee(t, x2) — K|z1 — 22|
(t,x1,x2)ERT xR2N
> sup u(t, z) — u(t, xe) — Klzg — 20|* > 0.

(t,x1,x2)ERT xR2NV
In order to make the supremum attained at some point, let us introduce smooth positive
functions v (t) and ¥9(z) with bounded first and second derivatives such that ¥ (t) —
+00 as t — +00, Ys(x) — +o0 as |xr| — +oo and there exists Ky > 0 such that
[o ()] < Ko(1 + 4/|z|). The last assumption on 1), assures that Z?[t),] is finite at any
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point. Then, for any K > 0 and ¢, ¢ > 0 and $ > 0 small enough, the supremum on
R* x R?Y of the function

(8.1) use (t, 1) — Uee (t, xa) — O(t, T1, 22),
where
Pt w1, w2) = Klwy — 22| + B (t) + Bipa(z1),
is positive and is attained at some point (£,71,Z2) € [0,+00) x R*N. For ¢, ¢ small

enough, 7, # Tp. Moreover, since u“¢ (0, 1) = . (0,2) = 0 for any x € RV, it turns out
that actually ¢ > .. Remark that

1
o 28Up (4, z)eme sy [t )]\ @
(82) ‘1}1 - 1'2’ S ( (¢ )ERKXR ) .

The function (8.1) is semiconvex, hence, by Aleksandrov’s Theorem, twice differentiable
almost everywhere. Let us now introduce a perturbation of it, for which we can choose
maximum points of twice differentiability. First we transform (¢,Z1,72) into a strict
maximum point. In order to do that, we consider a smooth function h : Rt — R,
with compact support, such that h(0) = 0 and h(s) > 0 for 0 < s < 1 and we set
0(t,x1,22) = h((t — 1)) + h(lzy — 71]?) + h(|ze — T2|*). Clearly (¢,7,75) is a strict
maximum point of u (£, 1) — U (t, 13) — d(t, 11, 75) — O(t, 21, 22). Next we consider a
smooth function x : RY — R such that x(z) = 1if |z| < 1/2 and x(x) = 0 for |z| > 1.

By Jensen’s Lemma, see e.g. Lemma A.3 of [9], for every small and positive 0 there
exist $° € R, ¢2, ¢5 € RY with |s°], |¢}], |¢5] < & such that the function

(8.3) D(t, 21, m9) = U (t, 1) — Ueer (t, 29) — K| — 22|* — 01 (t, 1) — (),
where

pi(t,an) = Ba(t) + Buoa(z1) + h((t = D?) + h(lzr — ") + %t + x(21 = T1)g) - 2,

pa(2) = h(|zs — Tof*) + X (22 — T2)q5 - x,

has a maximum at (#°,z{, 23), with
(8.4) |ts — 1|, |27 — T, 23 — T <6

and uS (t,71) — ueo(t, 75) is twice differentiable at (#2,29,23). In particular u®¢ is
twice differentiable w.r.t. x; at (#°,29) and u, . is twice differentiable w.r.t. x5 at (0, 23).

The function x has been introduced to make Z?[p;] and ZZ[¢s,] finite.

For § small enough, we can assume z{ # x5 and this will allow us to compute the

derivatives of (8.3). Since (#°,z9,x3) is a maximum point, we have

vﬂbluag(tév :L‘(;) = vxlgpl(taa :L,<15) + O_/K|l’? - xg|a_2(l'(; - l‘g),
Vmu“/(t‘s,mg) = _vm2902($g) + aK|x‘f - $g|a_2(x(i - xg)

Moreover the inequalities

(8.5)

(1, 2, 25 + 2) < O(t°, 29, 73),

(1, ) + 2,25 + ) < B(t°, 2], 25),
for any z € RN, with together (8.5), give respectively:
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use (t‘s, x‘i +2z)— ute (t‘s, x‘f) — Vzluﬁ’ﬁl (t‘;, x‘f) 2z
(8.6) <ot 2] +2) — 1 (1, 29) — Vo, 01(£,29) - 2
5 s

+ K2y + 2z — 25|* — Klaf — 25|* — aK|z] — 23" (2] — 23) - ,

— (e (10,25 + 2) — U (10, 23) — Vgt o (0, 25) - 2)
(8.7) < pa(5 + 2) — pa(@h) — Vaya(23) - 2
+ Kl2) = 2 = " = Kla} — 23]* + aK 2} — 23]* (2] — 23) - 2,
and for any r > 0
use (10,28 + 2) —us (10, 2) — Vo u (t°,20) - 215, (2)
< U (10,25 + 2) — e (0, 25) — Vyue o (10, 25) - 215,(2)
+ it a1 + 2) — (', 29) = Voo (0, 29) - 21p,(2)
+ 2(5 + 2) — @a(3) — Vi pa(23) - 215,(2),
where B, = B,(0). The last inequality in particular implies that
(89) T, ),29) < Ty [uew (1, ), 9] + I [pr (1), 28] + I [i0a, a5)-

Next, in order to test, we need to double the time variables. Hence, for j > 0, let us
consider the maximum point (#/,z7, s, 23) of the function

(8.8)

U (t, 1) — Ue (5, 29) — W(t, 21, 25) — %\t — /7,
where
\I’(t,.ilﬁl,.’le) = K‘.Tl - 1172’01 + gol(t, 1’1) + 902(232) + |t - t6|2 + |1’1 — .CE? 2 + ’.732 - .Ig 2,
on Q;5(t°,28) x Qz5(°, 23), for p > 0 sufficiently small. Standard arguments show that
(9,21, 87, 23) — (t°,29,1°,25) as j — +oo. Hence for j large enough there exists p > 0

such that Q,,(t/,2)) x Q,,(s7, 1)) C Qp5(t°,23) x Q45(t°, 23) and ] # x}. Testing, we
get
j(tj - Sj) + Q(tj - t6> + at@l(tja le) < Illjp[\puj? K .%’;), 'I]l] + IIQVP[UQG,(tj? ')7 le] + g1,

j<tj - Sj) > _Illvp[\p(tjv l‘{, ')7 IJZ] + 1.127p[u676’(5j7 ')7 IJQ] + 2.

Subtracting the two last inequalities, and then letting j — 400, we have
+ 1127p[u676, <t67 ')v ZL‘?] - 1.127/)[“6,6’(1567 ')’ Qfg] + 91— g2

Since u®¢ (t°,-) and uc (1%, -) are twice differentiable respectively at z; = 29 and x5 = 9,
we can pass to the limit as p — 01 and obtain

atgpl<t67 I?) S Il [uael (tév ')7 x(ls] - Il [ue,el (t67 ')7 xg] + g1 — g2-
Using (8.9), we finally get

e (t6> .73?) < Illm [u“l (t(s’ ')7 33?] - Illm [uﬁ,E’ (té’ ')7 mg]

(8.10) ) !
+ I i (0, ), 2] + T o, 28] + g1 — ga.
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Next, let us estimate the term Z," [u® (t°,-), 2%] — T, [uc« (%, -), 23] and show that it
contains a main negative part. For 0 < 1y < 1, let us denote
A= {2 € B.(0), |2+ (27 — a3)| = wozla] — 2]} .
Then
Illm[uge/(té’ ')7 lei] - Illm[ueﬁ’(té’ ')7 xg]
= / [ue’e/(té, 28 4 z) — ue’el(t‘s, 28) — leue’el (t°,29) - 2
Ap

- (UG,E’ (t6> 332 +2) — Ue, e’ (t67 mg) — Vi, Ue e (téa xg) - 2)|p(dz)

+ /B T\AT[...] u(dz)
- T1 + TQ.

From (8.8) we have
T, <C.

Here and henceforth C' denotes various positive constants independent of the parameters.
Let us estimate 7. Using (8.6) and (8.7), and successively making the change of variable
z — —z, we get the following estimate of 7T7:

T, < / Ko+ 2 — 23] — Klaf — a3|® — aK e} — a3]*2(e) — o) - Au(dz) + C
T / Kl — 2 — ad]® — Klad — al)* + aK ] — 2] — a) - 2Ju(d)
- / Kl + 2 — ad]® — Kla? — 3] — aK |z — a3l* (et — a3) - 2Ju(dz) + C

<ok [ sup{ley — a3 + 2|7 (|2} — a5 + t2 |2
A l<1

— (2= a)(2] — 2 +t2) - 2]*)}p(dz) + C.
Let us fix r = o|z{ — 23|, 0 > 0, then for z € A,
|29 — 25 + t2] < (14 0)]a] — 3],
0 — a8+ 12) 2] 21— ) 2l — |2l > (00— ) o] — 2.
Let us choose 0 < 0 < 11y < 1 such that
Co=—(1+0)P2+2—0a)(ry—0)*>0,
then
T, < —CCyK | — xg\a_Q/ 12|*u(dz) + C.

Ar

By homogeneity
/ |z|*u(dz) = Cr.
Ar
Then, we conclude

Ty < —CCoK|28 — 25|*7%r + C < —CCoK|a) — 25|*7! + C,
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and from (8.10)
CCKla] — x5|* " < =8 (1, 27) + 1 — g + C

+ I [ (), 29] + I [ipa, 4]

<g—g+C
Letting § go to 0, from the previous inequalities and (8.4) we finally obtain

K|z, —3|* ' < C,

where C' is independent of K. This is a contradiction for K large enough, because of
(8.2), hence u € C¥(RT x RY). O

Proof of Proposition 6.2

Let us define the functions Vi(7,Y) := e * U, (7,Y) and Vo(7,Y) := e Uy(7,Y), where
k= ||W"||s + 1. It is easy to see that V; and V; are respectively sub and supersolution
of

aTV = Leikq— + Il [V(Tv E yN—i-l)] + 9(77 Y7 V)
(8.11) +nlag + e (infy V(7,Y") = V(1,Y)||0yy.,V + €| in RT x RN*!
V(0,Y)=0 on RN*1
where g(7,Y,V) = —e "W/ (¥"V + P-Y) — kV + e *0(7,y). Remark that, by the
choice of k,
(812)  g(r,Y, V1) —g(r, Z,Va) < —=(Vi = Vo) + e (W [[o|P| + [l0"]|c)[Y = Z].

To prove the comparison between Uy and Us, it suffices to show that Vi(7,Y) < V,(7,Y)
for all (7,Y) € (0,T) x R¥*! and for any T > 0.

Suppose by contradiction that M = sup(, y e r)xrv+1 (Vi(7,Y) = Va(7,Y)) > 0 for
some T' > 0. Define for small vy, v, 3,6 > 0 the function ¢ € C?((R* x RV*1)2) by

1 , 1 , 5
HrY.5,2) = oolr = s+ oY = 2P+ (V) + =,

where 1) is defined as the function ¥, in the proof of Proposition 4.7. The supremum of
VA(T,Y) = Vi(s, Z) — ¢(1,Y, 5, Z) is attained at some point (7,Y,5, Z) € ((0,T) x RNVF1)2,
Standard arguments show that, because U; and U, are assumed bounded

(7.Y,5,2) = (7,7,Y,Z) asv —0,
Vi(7,Y) = Vi(7,Y), Va(5,Z) = Va(7,Z) as v — 0,
where (7,Y, Z) is a maximum point of Vi (7,Y) — Va(r, Z) — 55| Y = Z]P = By(Y) — 7.
Moreover, it is easy to see that
lim sup i}I/l/fVl(?, Y') < i}I/l/f‘/l(?, Y’), lim ilolf 1}r/1,f Va(5,Y') > i}r/l/f‘/g(?, Y').

v1—0 vi—

Since V] and V3 are respectively sub and supersolution of (8.11), for any r > 0 we have
0 T—38
T—72 ",
Cnr

(813) < Le™ 4 == 4 BT Tn) B+ T IAR ) )+ 9(7 Y VAR Y)

+lag + € (inf Vi(7, V) = W(E T )] [P 4 50, oY) +
2



37

and
o . -
T2 Le ™ - 2 L T2 W5, Zn), 2] + 9(5, 2, Va(5, Z))
(8.14) . v .
+ nlao + e (inf Va(s, V) = Va(5, 2))] | RHEE 4 e
2

where Cly is a constant depending on the dimension N. Since (7,Y,3, Z) is a maximum
point, we have

Vi(T, 7+ 2,Tx4) = VA(TY) SVo(5. 2+ 2, 2n1) = Va(5, Z) + BT + 2, Ty ) — (Y],
for any € RY, which implies that for any r > 0

Ilzﬂﬂ[‘/l(?a '7?N+1)7y] < If’r[‘é(E, '72N+1)7z] + BIIQVT[@D<'>§N+1)>Z]'
Then, subtracting (8.13) with (8.14) and letting » — 07, we get

ﬁ < L(e_lﬁ - e_kg) + 5LW(':§N+1)7§] + g(?v ?; VY1<?77)) - 9(577a ‘/2(§a 7))

y _EN 1 5 — k7
IN+1  “NA+1 + 53yN+1¢(Y) Te k

+nlao + €7 (inf Vi(7,Y") = Vi(7,Y))] ”
2

YNt1 — ZN+1
Vo

—nlag + (inf (s, V') — V(5. 2)] Tt

Next, letting 14 — 0 and using (8.12), we obtain
(8.15)
J

(T —7)2

< BL[( Tv1), 8 = (ViR ¥) = Va7, 2)) + T (IW" ol Pl + llollo) ¥ = 2]+ OB

+ e nf Vi(7,Y) = inf Va(7,Y) = (Vi(7, V) = Va(7, 2))] [ PR 4 77

! ! I/2

It is easy to prove that

1 liminf (V;i(7,Y) - Va(7, Z)) > M
(8.16) Jminf (Vi(7.Y) = Va(7, 2)) 2
and R

_ 72
Y=2F_.

9]

where C' is independent of 5 and 6. Up to subsequence, T — 79 € [0, 7] as (3,9) — (0,0)
and by (8.16), we have

limsup [inf Vi(7,Y") —inf V(7. Y') = (Vi(7,Y) = V&(7, 2))

(8,6)—(0,0) Y

< 131/1,f V(7-07 Y/) - lglf ‘/2(7-07 Y/) - Sup(‘/l(7-07 YI) - ‘/2<T0? Yl))
Y/

< 0.

Then, passing to the limit first as (5,d) — (0,0) and then as v, — 0 in (8.15) we finally
get the contradiction:
M <0

— Y
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and this concludes the proof of the comparison theorem. O
REFERENCES
[1] O. ALVAREZ, Homogenization of Hamilton-Jacobi equations in perforated sets, J. Differential Equa-

tions, 159 (1999), no. 2, 543-577.

O. Avarez AND E. N. BARRON, Homogenization in L°°, J. Differential Equations, 183 (2001),
no. 1, 132-164.

O. AwvArez, P. HocH, Y. LE BOUAR, AND R. MONNEAU, Dislocation dynamics: short-time
existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), no. 3, 449-504.
O. ALvArREZ AND H. IsHii, Hamilton-Jacobi equations with partial gradient and application to
homogenization, Comm. Part. Differential Equations, 26 (2001), no. 5-6, 983-1002.

S. AWATIF, Equations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I.
Unicité des solutions de viscosité. II. Existence de solutions de viscosité,Comm. Partial Differen-
tial Equations, 16 (1991), no. 6-7, 1057-1093.

G. BARLES, Some homogenization results for non-coercive Hamilton-Jacobi equations. Calculus of
Variations and Partial Differential Equations, 30 (2007), no. 4, 449-466.

G. BARLES AND C. IMBERT Second-order elliptic integro-differential equations: viscosity solution’s
theory revisited, Annales de I’IHP, 25 (2008), no. 3, 567-585.

L. CAFFARELLI AND L. SILVESTRE Regularity theory for fully nonlinear integro-differential equa-
tions, Comm. Pure Appl. Math., 62 (2009), no. 5, 597-638.

M.C. CrANDALL, H. IsHi1 AND P.L. LiONS, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), no. 1, 1-67.

C. DENOUAL, Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods,
Phys. Rev. B, 70 (2004), 024106.

J. DroNIOU AND C. IMBERT, Fractal first order partial differential equations, Archive for Rational
Mechanics and Analysis, 182 (2006), no. 2, 299-331.

A. EL HajJ, H. IBRAHIM AND R. MONNEAU, Dislocation dynamics: from microscopic models
to macroscopic crystal plasticity, Continuum Mechanics and Thermodynamics, 21 (2009), no. 2,
109-123.

L. C. EvANS, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc.
Roy. Soc. Edinburgh Sect. A, 111 (1989), no. 3-4, 359-375.

N. FOrRCADEL, C. IMBERT AND R. MONNEAU, Homogenization of dislocation dynamics and some
particle systems with two-body interactions. Discrete and Continuous Dynamical Systems - A, 23
(2009), no.3, 785 - 826.

N. ForcADEL, C. IMBERT AND R. MONNEAU, Homogenization of fully overdamped Frenkel-
Kontorova models, Journal of Differential Equations, 246 (2009), no. 1, 1057-1097.

D. FRANGOIS, A. PINEAU AND A. ZA0UI, Comportement mécanique des matériaux, Paris: Hermes,
(1995).

A. GARRONI AND S. MULLER, I'-limit of a phase-field model of dislocations STAM J. Math. Anal.,
36 (2005), no. 6, 1943-1964.

A. GARRONI AND S. MULLER, A variational model for dislocations in the line tension limit, Arch.
Ration. Mech. Anal., 181 (2006), 535-578.

M. GONZALEZ AND R. MONNEAU, Slow motion of particle systems as a limit of a reaction-diffusion
equation with half-Laplacian in dimension one, DCDS-A, 32 (2012), no. 4, 1255-1286.

J. R. HIrRTH AND L. LOTHE, Theory of dislocations, Second Edition. Malabar, Florida: Krieger,
1992.

K. HorIE AND H. IsHII, Homogenization of Hamilton-Jacobi equations on domains with small scale
periodic structure, Indiana Univ. Math. J., 47 (1998), no. 3, 1011-1058.

C. IMBERT, A non-local regularization of first order Hamilton-Jacobi equations. Journal of Differ-
ential Equations, 211 (2005), no. 1, 214-246.

C. IMBERT AND R. MONNEAU, Homogenization of first order equations with u/e-periodic Hamil-
tonians. Part I: local equations, Archive for Rational Mechanics and Analysis, 187 (2008), no. 1,
49-89.



39

[24] C. IMBERT, R. MONNEAU AND E. Rouy, Homogenization of first order equations with w/e-periodic
Hamiltonians. Part II: application to dislocations dynamics, Communications in Partial Differential
Equations, 33 (2008), no. 1-3, 479-516.

[25] C. IMBERT AND P. E. SOUGANIDIS, Phasefield theory for fractional diffusion-reaction equations and
applications, preprint.

[26] H. IsHII, Almost periodic homogenization of Hamilton-Jacobi equations, International Conference
in Differential Equations, Vol. 1, 2, Berlin (1999), 600-605, World Sci. Publishing, River Edge, NJ,
2000.

[27] H. IsHIl, Homogenization of the Cauchy problem for Hamilton-Jacobi equations, Stochastic analysis,
control, optimization and applications, System Control Found. Appl., 305-324, Birkhduser Boston,
Boston, MA, 1999.

[28] H. IsHiI AND P.L. LioNs, Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Partial
Differential Equations, J. Differential Equations, 83 (1990), no. 1, 26-78.

[29] E. R. JAKOBSEN AND K. H. KARLSEN, Continuous dependence estimates for viscosity solutions of
integro-PDEs. J. Differential Equations, 212 (2005), 278-318.

[30] N.S. LaNDKOF, Foundations of Modern Potential Theory, Springer-Verlag, 1972.

[31] P. L. Lions, G. C. PAPANICOLAOU AND S. R. S. VARADHAN, Homogenization of Hamilton-Jacobi
equations, unpublished, 1986.

[32] R. MONNEAU AND S. PATRIZI, Derivation of Orowan’s law from the Peierls-Nabarro model, preprint
(2011).

[33] A.B. MovcHAN, R. BuLLoucH AND J.R. WILLIS, Stability of a dislocation: discrete model, Fur.
J. Appl. Math. 9 (1998), 373-396.

[34] F.R.N. NABARRO, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.

[35] F.R.N. NABARRO, Fifty-year study of the Peierls-Nabarro stress, Material Science and Engineering
A 234-236 (1997), 67-76.

[36] R. PEIERLS, The size of a dislocation, Proc. Phys. Soc., 52(1940), 34-37.

[37] P. E. SOUGANIDIS, Stochastic homogenization of Hamilton-Jacobi equations and some applications,
Asymptot. Anal., 20 (1999), no. 1, 1-11.

[38] H. WEI, Y. XIANG AND P. MING, A Generalized Peierls-Nabarro Model for Curved Dislocations
Using Discrete Fourier Transform, Communications in computational physics 4(2) (2008), 275-293.

E-mail address: monneau@cermics.enpc.fr
E-mail address: spatrizi@math.ist.utl.pt



