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DRAFT

1. Introduction

In this paper, we study a nonlocal, reaction-diffusion equation that arrises naturally in the
Peierls–Nabarro model for atomic dislocations in crystals. Our initial configuration corre-
sponds to multiple loop dislocations with the same orientation. After suitably rescaling the
problem from the microscopic scale to the mesoscopic scale, we show that the dislocation
loops move independently, according to their mean curvature.

The evolution of edge dislocations has been well-studied in the literature, that is, when
the dislocations are straight, parallel lines. See [7] for an excellent overview of the subject.
In this special setting, the Peierls–Nabarro model reduces to a one-dimensional PDE. We are
the first to study the dynamics of dislocation curves that are not edge dislocations and thus
the physical model can only be reduced to a two-dimensional PDE.
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To be more precise, we are interested in the nonlocal, reaction-diffusion equation

(1.1) ε∂tu
ε =

1

ε |ln ε|
(εInuε −W ′(uε)) in Rn, n ≥ 2,

where ε > 0 is a small parameter, In denotes the fractional Laplacian of order 1 in Rn, and
W is a multi-well potential. The nonlocal operator In is given by

Inu(x) = P.V.

ˆ
Rn

(u(x+ y)− u(x))
dy

|y|n+1 dy

where P.V. indicated that the integral is taken in the principal value sense. Up to a
multiplicative constant, it can be shown that In satisfies the Fourier transform identity

Înu(ξ) = |ξ| û(ξ), ξ ∈ Rn. For more further backgound on fractional Laplacians, see for
example [6, 14]. Regarding the potential W , we assume that

W ∈ C2,β(R) for some 0 < β < 1

W (u+ 1) = W (u) for any u ∈ R
W = 0 on Z
W > 0 on R \ Z
W ′′(0) > 0.

We let uε be the solution to (1.1) when the initial condition uε0 is a superposition of layer
solutions. The layer solution (also called the phase transition) φ : R → [0, 1] is the unique
solution to the standing wave equation

(1.2)


CnI1[φ] = W ′(φ) in R
φ̇ > 0 in R
φ(−∞) = 0, φ(+∞) = 1, φ(0) = 1

2 ,

where I1 denotes the 1/2-Laplacian in R and where the constant Cn > 0 (given explicitly in
(3.4)) depends only on n ≥ 2. Further discussion on φ will be presented in Section 3.

Let (Ωi
0)Ni=1 be a sequence of open subsets of Rn that are both smooth and bounded and

that satisfy Ωi
0 ⊂⊂ Ωi+1

0 . The corresponding boundaries Γi0 = ∂Ωi
0 can be understood as the

initial dislocation loops in the crystal, see Figure Let di(t, x) be the signed distance function
associated to Ωi

0, i = 1, . . . , N , given by

(1.3) di(x) =

{
d(x,Γi0) if x ∈ Ωi

0

−d(x,Γi0) otherwise.

For our initial condition to be well-prepared, we let uε0 be N -fold sum of the layer solutions
φ(di(x)/ε), see Figure

We will show that the dislocation curves (Γit)t≥0 move according to their mean curvature.
Roughly speaking, Γit is the zero level set of a solution ui to the mean curvature equation
whose initial zero level set is precisely Γi0. Then, we say that (+Ωi

t,Γ
i
t,
−Ωi

t) denotes the

level-set evolution of (Ωi
0,Γ

i
0, (Ω

i
0)c) where +Ωi

t and −Ωi
t are the positivity and negativity sets

of ui respectively. See Section 2 for precise definitions and details.
We now present the main result of our paper.



MULTIPLE INTERPHASES FOR FRACTIONAL ALLEN-CAHN EQUATION 3

Theorem 1.1. Let uε = uε(t, x) be the unique solution of the reaction diffusion equation
(1.1) with the initial datum uε0 : Rn → [0, N ] defined by

uε0(x) =

N∑
i=1

φ

(
di(x)

ε

)
.

Then, as ε→ 0, the solutions uε satisfy
uε → N in +ΩN

t ,

uε → i in +Ωi
t ∩ −Ωi+1

t , i = 1, . . . , N − 1,

uε → 0 in −Ω1
t ,

where (+Ωi
t,Γ

i
t,
−Ωi

t) denotes the level-set evolution of (Ωi
0,Γ

i
0, (Ω

i
0)c).

Our result says that uε converges to integers between the dislocation curves, see Figure
However, due to the degeneracy of the mean curvature equation, the sets Γit might develop
interior and, a priori, we cannot say exactly where the jump occurs. More precisely, we say
that Γit does not develop interior if and only if Γit = ∂(+Ωi

t) = ∂(−Ωi
t). In this case, the

limiting function in Theorem 1.1 satisfies

lim
ε→0

uε =
N

2
+

1

2

N∑
i=1

(
1+Ωi

t
− 1

(+Ωi
t)

c

)
in (0,∞)× Rn \

N⋃
i=1

Γi.

Theorem 1.1 for N = 1 was studied by Imbert–Souganidis in the preprint [11]. When
N > 1, the nonlinearity of the potential W plays more of a role. One of the key tools for the
proof is the construction of strict sub/super solutions of the form

vε(t, x) '
N∑
i=1

φ

(
di(t, x)

ε

)
,

where di is the signed distance function associated to Γit. A formal argument for this choice
of barrier is presented in Section 4. The difficulty arrises in understanding vε(t, x) when (t, x)
is far from the front Γit since the signed distance function is not smooth at such points. In
[11], they use vε to interpolate between 0 (outside the curve) and 1 (inside the curve). We
found their method to be insufficient when N > 1. Instead, we replace di with a smooth
extension of the signed distance function away from the curve. Then, we are able to use the
asymptotic properties of φ to show that vε is indeed a sub/super solution (see Section 5).

1.1. The Peierls–Nabarro model for loop dislocations.

1.2. Organization of paper. The rest of the paper is organized as follows. First, in Section
2, we provide the necessary background pertaining to motion by mean curvature. Section 3
contains preliminary results on the phase transition φ and other auxiliary results needed for
the rest of the paper. Then, in Section 4, we provide heuristics for the proof of Theorem 1.1
and for the choice of barrier. The construction of barriers is presented in Section 5. Section
6 contains the proof of Theorem 1.1. Lastly, the proofs of some auxiliary lemmas are given
in Section 7.
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2. Motion by mean curvature

In this section, we introduce the geometric motions of the fronts. For a smooth function
u = u(t, x), consider the sets

+Ω = {(t, x) : u(x, t) > 0}
Γ = {(t, x) : u(x, t) = 0}
−Ω = {(t, x) : u(x, t) < 0}.

Denote the slices in t of +Ω by
+Ωt = +Ω ∩ ({t} × Rn).

and similarly for Γt and −Ωt. Together, these form a set of triples (+Ωt,Γt,
−Ωt)t≥0.

Let d(t, x) denote the signed distance function associated to Γt:

d(t, x) =

{
d(x,Γt) for x ∈ Γt ∪ +Ωt

−d(x,Γt) for x ∈ −Ωt.

Then, as theorized by Osher–Sethian [12] and justified by Evans–Spruck in [8] for viscosity
solution, the zero level sets (Γt)t>0 of u move with normal velocity

v(t, x, d(x, t)) = −µ∆d(x, t), µ > 0,

if and only if u is a solution to the following nonlinear, degenerate equation

(2.1) ∂tu = µ tr
(

(I − ∇̂u⊗ ∇̂u)D2u
)
,

where p̂ = p/ |p| for p ∈ Rn and ⊗ denotes the tensor product. That is, the zero level sets of
u move according to their mean curvature if and only if u is a solution to the mean curvature
equation given in (2.1). In fact, the mean curvature equation is a geometric equation, so if
u solves (2.1), then so does Φ(u) for any smooth function Φ : R → R. Consequently, u is a
solution to the mean curvature equation if and only if every level set of u moves by mean
curvature.

For a bounded, open set Ω0 ⊂ Rn, consider the triplet (Ω0,Γ0, (Ω0)c) where Γ0 = ∂Ω0.
Let u0(x) be such that

Ω0 = {x : u0(x) > 0} and Γ0 = {x : u0(x) = 0}.
If u is a solution to (2.1) with initial data u(0, x) = u0(x), then the zero level sets of u move
according to their mean curvature and we say that (+Ωt,Γt,

−Ωt)t≥0 denotes the level set
evolution of (Ω0,Γ0, (Ω0)c). Under certain conditions on Ω0 (such as smooth and convex),
the sets (Γt)t≥0 do not develop interior, that is, Γt = ∂(+Ωt) = ∂(−Ωt). However, this is
not true in general due to the degeneracy of the mean curvature equation which is why we
cannot say anything about the jump sets Γt in Theorem 1.1.

Consider the special case in which the curves Γt are smooth and do not develop interior
for some time. Then, the signed distance function d is smooth and satisfies |∇d| = 1 in a
neighborhood of Γt and is a solution to (2.1) on Γt. Moreover, as a consequence of the strong
maximum principle (see

2.0.1. Weak solutions. Due to the underlying geometry of Theorem 1.1, it is helpful to pass
the notion of viscosity solutions of the PDE (2.1) to weak solutions of the level sets of the
solution u. We use the notion of generalized flows for the mean curvature equation presented
in [11]. Let F (p,X) be given by

F (p,X) = −µ tr ((I − p̂⊗ p̂)X)
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and the lower and upper semi-continuous envelopes of F be denoted by F∗ and F ∗ respectively.

Definition 2.1. A family (Ωt)t>0 of open (closed) subsets of Rn is a generalized super-flow
(sub-flow) of the mean curvature equation (2.1) if for all (t0, x0) ∈ (0,∞) × Rn, h > 0, and
for all smooth functions ϕ : (0,∞)× Rn → R such that

(i) (Boundedness) There exists r > 0 such that

{(t, x) ∈ [t0, t0 + h]× Rn : ϕ(t, x) ≥ 0} ⊂ [t0, t0 + h]×B(x0, r),

(ii) (Strict subsolution) There exists δ = δ(ϕ) > 0 such that

∂tϕ+ F ∗(Dϕ,D2ϕ) ≤ −δ in [t0, t0 + h]×B(x0, r),

(∂tϕ+ F∗(Dϕ,D
2ϕ) ≥ δ)

(iii) (Non-degeneracy)

Dϕ 6= 0 in {(t, x) ∈ [t0, t0 + h]×B(x0, r) : ϕ(t, x) = 0},
(iv) (Initial condition)

{x ∈ B(x0, r) : ϕ(t0, x) ≥ 0} ⊂ Ωt0

({x ∈ B(x0, r) : ϕ(t0, x) ≤ 0} ⊂ Rn \ Ωt0),

then

{x ∈ B̄(x0, r) : ϕ(t0 + h, x) > 0} ⊂ Ωt0+h

({x ∈ B̄(x0, r) : ϕ(t0 + h, x) < 0} ⊂ Rn \ Ωt0+h).

For the interested reader, we remark that (Ωt)t≥0 is a generalized super-flow (sub-flow) of
(2.1) if and only if 1Ωt − 1(Ωt)c

is a viscosity super (sub) solution of (2.1), see [2, Theorem

2.4]. For an introduction and background on viscosity solutions, see for example [4].

3. The phase transition, the corrector, and the auxiliary functions

In this section, we will introduce the phase transition φ and the corrector ψ. Along the
way, we will also define the auxiliary functions aε and āε and exhibit their relationship with
fractional Laplacians and the mean curvature equation, respectively.

3.1. The phase transition φ. Let φ be the solution to the standing wave equation (1.2).
In [3], they proved existence and uniqueness of the solution φ. Asymptotics on the decay of
φ were established in [13] with finer estimates in [7, 10]. We summarize their results in the
next lemma. For convenience in the notation, let c0 and α be given respectively by

(3.1) c−1
0 =

ˆ
R

[φ̇(ξ)]2 dξ and α =
W ′′(0)

Cn
.

Lemma 3.1. There is a unique solution φ ∈ C2,β(R) of (1.2). Moreover, there exists a
constant C = C(φ) > 0 such that

(3.2)

∣∣∣∣φ(ξ)−H(ξ) +
1

αξ

∣∣∣∣ ≤ C

|ξ|2
, |ξ| ≥ 1

and

(3.3) |φ̇(ξ)| ≤ C

|ξ|2
, |φ̈(ξ)| ≤ C

|ξ|2
, |ξ| ≥ 1.

The following is an auxiliary lemma that allows us to view one-dimensional fractional
Laplacians of φ : R→ R equivalently as n-dimensional fractional Laplacians.
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Lemma 3.2. For a unit vector e ∈ Sn, let φe(x) = φ(e · x) : Rn → R. Then,

In[φe](x) = CnI1[φ](e · x).

where

(3.4) Cn =

ˆ
Rn−1

1

(|y|2 + 1)
n+1
2

dy.

Consequently,

(3.5) CnI1[φ](ξ) =

ˆ
Rn

(φ(ξ + e · z)− φ(ξ))
dz

|z|n+1 , ξ ∈ R.

Proof. Begin by writing

In[φe](x) =

ˆ
Rn

(φe(x+ z)− φe(x))
dz

|z|n+1 =

ˆ
Rn

(φ(e · x+ e · z)− φ(e · x))
dz

|z|n+1 .

We claim that it is enough to prove the result for e = e1. Indeed, let T be a rotation
matrix such that Te = e1 and apply the change of variables Tz = y to obtain

In[φe](x) =

ˆ
Rn

(
φ(e · x+ e · T−1y)− φ(e · x)

) dy

|T−1y|n+1

=

ˆ
Rn

(φ(e1 · Tx+ e1 · y)− φ(e1 · Tx))
dy

|y|n+1 = In[φe1 ](Tx).

If In[φe1 ](x0) = CnI1[φ](e1 · x0) for any x0 ∈ R, then we take x0 = Tx and notice that

In[φe](x) = CnI1[φ](e1 · Tx) = CnI1[φ](Te · Tx) = CnI1[φ](e · x).

Hence, the result holds.
It remains to prove the lemma for e = e1. Observe for x = (x1, x

′) ∈ R× Rn−1 that

In[φe1 ](x) =

ˆ
Rn

(φ(x1 + z1)− φ(z1))
dz

|z|n+1

=

ˆ
R

(φ(x1 + z1)− φ(z1))

(ˆ
Rn−1

1

|(z1, z′)|n+1 dz
′
)
dz1.

Since ˆ
Rn−1

1

|(z1, z′)|n+1 dz
′ =

ˆ
Rn−1

1

(|z′|2 + z2
1)

n+1
2

dz′

=
1

|z1|n+1

ˆ
Rn−1

1

(|y|2 + 1)
n+1
2

|z1|n−1 dy =
Cn

|z1|2
,

we have

In[φe1 ](ξ) = Cn

ˆ
R

(φ(x1 + z1)− φ(z1))
dz1

|z1|2
= CnI1[φ](e1 · x).

To prove (3.5), fix ξ ∈ R. Let x ∈ Rn be such that ξ = e · x and simply observe that

CnI1[φ](ξ) = CnI1[φ](e · x) = In[φe](x)

=

ˆ
Rn

(φ(e · x+ e · z)− φ(e · x))
dz

|z|n+1

=

ˆ
Rn

(φ(ξ + e · z)− φ(ξ))
dz

|z|n+1 .

�
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3.2. The auxiliary functions aε and āε. Here, we will introduce two auxiliary functions
that are necessary for our analysis. Let d = d(t, x) be a given smooth function. Define the
function function aε = aε(ξ; t, x, e) by

aε =

ˆ
Rn

(
φ

(
ξ + e · z +

d(t, x+ εz)− d(t, x)−∇d(t, x) · εz
ε

)
− φ (ξ + e · z)

)
dz

|z|n+1 ,

where (ξ, t, x, e) ∈ R× [0,∞)× Rn × Sn. The corresponding function āε = āε(t, x, e) is

(3.6) āε(t, x, e) =
1

ε |ln ε|

ˆ
Rn

aε (ξ; t, x, e) φ̇(ξ) dξ.

We will be interested in aε and aε when d is the signed distance function to a front Γt. In
this case, one of the main results in [11] is that āε converges to the mean curvature of d in a
neighborhood of Γt, see Lemma 3.4. However, we must take care because the signed distance
function itself is not smooth everywhere. Throughout the paper, we will use the following
smooth extension of the distance function away from Γt.

Definition 3.3 (Extension of the signed distance function). Let ρ > 0 be such that the

signed distance function d̃ associated to a curve Γt is smooth in

Qρ = {(t, x) : |d̃(t, x)| ≤ ρ}.

Consequently, |∇d̃| = 1 in Qρ. We extend d̃(t, x) outside of Qρ with a smooth, bounded
function d(t, x) satisfying

d(t, x)


= d̃(t, x) in Qρ

≥ ρ in {(t, x) : d(t, x) > ρ}
≤ −ρ in {(t, x) : d(t, x) < ρ}.

Lemma 3.4 (Lemma 4 in [11]). Let d be as in Definition 3.3. Then,

lim
ε→0

c0āε(t, x, e) = µ∆d(t, x) = µ tr
(

(I − ∇̂d⊗ ∇̂d)D2d
)

uniformly in (t, x, e) ∈ Qρ × Sn−1.

Remark 3.5. If d is as in Definition 3.3, then since d is smooth and bounded outside of
Qρ, the function āε is bounded independently of ε in (t, x, e) ∈ (0,∞) × Rn × Sn−1 as a
consequence of the proof of [11, Lemma 4].

It is also important to notice that, morally, aε is the difference between an n-dimensional
and a 1-dimensional fractional Laplacian of φ(d/ε). This is seen in the following two lemmas.
We delay their proofs until the end of the paper (see Section 7).

Lemma 3.6 (Near the front). Let d be as in Definition 3.3. If |d(t, x)| ≤ ρ, then

(3.7) aε

(
d(t, x)

ε
; t, x,∇d(t, x)

)
= εIn

[
φ

(
d(t, ·)
ε

)]
(x)− CnI1[φ]

(
d(t, x)

ε

)
.

Lemma 3.7 (Far from the front). Let d be as in Defintion 3.3. If |d(t, x)| > ρ, then there is
a constant C = C(n, φ, d) > 0 such that, for any unit vector e,∣∣∣∣aε(d(t, x)

ε
; t, x, e

)
−
[
εIn

[
φ

(
d(t, ·)
ε

)]
(x)− CnI1[φ]

(
d(t, x)

ε

)]∣∣∣∣ ≤ Cε

ρ
.
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3.3. The corrector ψ. The linearized operator L associated to (1.2) is given by

(3.8) L[ψ] = −CnI1[ψ] +W ′′(φ)ψ.

Let ψ = ψ(ξ; t, x, e) be the solution to the linearized standing wave equation

(3.9)

L[ψ] =
aε (ξ; t, x, e)

ε |ln ε|
+ φ̇ (ξ) c0(σ − āε(t, x, e)) + σ̃

(
W ′′ (φ(ξ))−W ′′(0)

)
ξ ∈ R

ψ(±∞; t, x, e) = 0,

where σ > 0 is a small positive constant and σ̃ > 0 is such that σ = W ′′(0)σ̃.

Lemma 3.8. There is a unique solution ψ = ψ(ξ; t, x, e) to (3.9) such that ψ, ψ̇, ψt, and D2
xψ

are bounded independently of ξ, t, x, ε.

Proof. The proof of existence of a unique ψ ∈ H
1
2
ξ (R) follows exactly as in the proof of

[10, Theorem 3.2] using a Lax-Milgram argument.

Estimates on the right-hand side of the equation for ψ.

• We consider the time derivative of aε(ξ; t, x, φ):

∂taε(ξ; t, x, φ) =

ˆ
Rn

∂t

(
φ

(
ξ +

d(t, x+ εz)− d(t, x)

ε

)
− φ (ξ + e · z)

)
dz

|z|n+1

=

ˆ
Rn

φ̇

(
ξ +

d(t, x+ εz)− d(t, x)

ε

)
dt(t, x+ εz)− dt(t, x)

ε

dz

|z|n+1 .

Therefore,

|∂taε(ξ; t, x, φ)| ≤
ˆ
Rn

φ̇

(
ξ +

d(t, x+ εz)− d(t, x)

ε

)
|dt(t, x+ εz)− dt(t, x)|

ε

dz

|z|n+1 .

�

With a similar flavor as Lemma 3.7 for φ, we conclude this section by stating the following
estimate for the n- and 1-dimensional fractional Laplacians of ψ.

Lemma 3.9. There is a constant C = C(n, ψ, d) > 0 such that, for any (t, x) ∈ [0,∞)×Rn
and any unit vector e = e(t, x),∣∣∣∣εIn [ψ(d(t, ·)

ε
; t, ·, e(t, ·)

)]
(x)− CnI1[ψ (·; t, x, e(t, x))]

(
d(t, x)

ε

)∣∣∣∣ ≤ Cε1/2.

4. Heurtistics

4.1. Ansatz for motion by mean curvature. We believe it is helpful to view the heuris-
tical derivation of the evolution of the fronts Γit by mean curvature in Theorem 1.1. For this,
we consider the simple case of N = 2.

For the following formal computations, assume that the signed distance function di(t, x)
associated to Γit is smooth and that |∇di| = 1. Moreover, we assume that there is a positive,
uniform distance ρ between Γ1

t and Γ2
t .

The ansatz for the solution to the reaction-diffusion equation (1.1) is given by

(4.1) uε(t, x) ' φ
(
d1(t, x)

ε

)
+ φ

(
d2(t, x)

ε

)
.

Plugging the ansatz into (1.1), the left-hand side gives

(4.2) ε∂tu
ε ' φ̇

(
d1

ε

)
∂td1 + φ̇

(
d2

ε

)
∂td2.
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Up to dividing by ε |ln ε|, we use the equation for φ (see (1.2)) and estimates on aε (see
Lemma 3.6 and Lemma 3.7) to write the right-hand side of (1.1) for the ansatz as
(4.3)
εIn[uε]−W ′(uε)

' εIn
[
φ

(
d1

ε

)]
+ εIn

[
φ

(
d2

ε

)]
−W ′

(
φ

(
d1

ε

)
+ φ

(
d2

ε

))
=

(
εIn
[
φ

(
d1

ε

)]
− CnI1[φ]

(
d1

ε

))
+

(
εIn
[
φ

(
d2

ε

)]
− CnI1[φ]

(
d2

ε

))
+ CnI1[φ]

(
d1

ε

)
+ CnI1[φ]

(
d2

ε

)
−W ′

(
φ

(
d1

ε

)
+ φ

(
d2

ε

))
' aε

(
d1

ε

)
+ aε

(
d2

ε

)
+W ′

(
φ

(
d1

ε

))
+W ′

(
φ

(
d2

ε

))
−W ′

(
φ

(
d1

ε

)
+ φ

(
d2

ε

))
.

Freeze a point (t, x) near the front Γ1
t . Let ξ = d1(t, x)/ε and assume separation of scales.

That is, assume that ξ and (t, x) are unrelated. In this regard, let η = |d2(t, x)| ≥ ρ, so that
η−1 is bounded. Since the ansatz uε is a solution to (1.1), we can multiply the equation by

by φ̇(ξ) and integrate over ξ ∈ R to write

(4.4)

ˆ
R
ε∂tu

εφ̇ dξ ' 1

ε |ln ε|

ˆ
R

(
εInuε −W ′(uε)

)
φ̇(ξ) dξ.

For convenience, we will consider the left and right-hand sides separately again.
First, the left-hand side of (4.4) with (4.2) gives

ˆ
R
ε∂tu

ε φ̇(ξ) dξ ' ∂td1(t, x)

ˆ
R

[φ̇ (ξ)]2 dξ + φ̇(η)∂td2(t, x)

ˆ
R
φ̇(ξ) dξ

' c−1
0 ∂td1(t, x) +

Cε2

η2
∂td2(t, x)

' c−1
0 ∂td1(t, x),

where we used (3.1), (1.2), and the asymptotics on φ̇ (see (3.3)).
Next, we look at the right-hand side of (4.4) with (4.3). First, using that (1.2) and that

W is periodic, we have

1

ε |ln ε|

ˆ
R
W ′ (φ(ξ)) φ̇(ξ) dξ =

1

ε |ln ε|

ˆ
R

d

dξ
[W (φ (ξ))] dξ

=
1

ε |ln ε|
[W (1)−W (0)] = 0.

Next, we use the asymptotics and properties of φ (see (1.2), (3.2)) and Taylor expand W ′

around the origin to estimate

1

ε |ln ε|
W ′ (φ(η))

ˆ
R
φ̇(ξ) dξ =

1

ε |ln ε|
W ′
(
φ
(η
ε

)
−H

(η
ε

))
' 1

ε |ln ε|

(
W ′(0) +W ′′(0)

(
φ
(η
ε

)
−H

(η
ε

)))
' 0 +

1

ε |ln ε|
Cε

η
' 0.
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For the remaining W ′ term, we Taylor expand around φ(ξ) and use similar estimates to
obtain

1

ε |ln ε|

ˆ
R
W ′
(
φ (ξ) + φ

(η
ε

))
φ̇(ξ) dξ

=
1

ε |ln ε|

ˆ
R
W ′
(
φ (ξ) + φ

(η
ε

)
−H

(η
ε

))
φ̇(ξ) dξ

' 1

ε |ln ε|

ˆ
R

[
W ′ (φ (ξ)) +W ′′ (φ (ξ))

(
φ
(η
ε

)
−H

(η
ε

))]
φ̇(ξ) dξ

=
1

ε |ln ε|

ˆ
R
W ′ (φ (ξ)) φ̇(ξ) dξ +

1

ε |ln ε|

(
φ
(η
ε

)
−H

(η
ε

)) ˆ
R
W ′′ (φ (ξ)) φ̇(ξ) dξ

' 0 +
1

ε |ln ε|
Cε

η

ˆ
R

d

dξ
[W ′ (φ (ξ))] dξ =

C

η |ln ε|
[W ′(1)−W ′(0)] = 0.

Lastly, for the nonlocal terms, we first use Corollary 7.1 to justify that

1

ε |ln ε|
aε

(η
ε

) ˆ
R
φ̇(ξ) dξ ' 0

and then Lemma 3.4 to conclude that

1

ε |ln ε|

ˆ
R
aε (ξ) φ̇(ξ) dξ

= āε(t, x) ' c−1
0 µ tr

(
(I − ̂∇d1(t, x)⊗ ̂∇d1(t, x))D2d1(t, x)

)
.

Combing all these pieces, we conclude that (4.4) for the ansatz gives

c−1
0 ∂td1(t, x) ' µc−1

0 tr
(

(I − ̂∇d1(t, x)⊗ ̂∇d1(t, x))D2d1(t, x)
)
.

The computation for (t, x) frozen near Γ2
t is similar. We conclude that the fronts move

according to their mean curvature:∂td1(t, x) ' µ tr
(

(I − ̂∇d1(t, x)⊗ ̂∇d1(t, x))D2d1(t, x)
)

near Γ1
t

∂td2(t, x) ' µ tr
(

(I − ̂∇d2(t, x)⊗ ̂∇d2(t, x))D2d2(t, x)
)

near Γ2
t .

4.2. Ansatz for corrector. One of the key ingredients in proving Theorem 1.1 is the con-
struction of strict subsolutions (supersolutions), denoted by vε = vε(t, x). For this, it is
necessary to add a small corrector ψ to the ansatz in (4.1). In order to showcase the equa-
tion for ψ, we will consider the simplest case in whichN = 1 and assume that d(t, x) = d1(t, x)
is smooth with |∇d| = 1 and satisfies

(4.5) ∂td = µ∆d− c0σ ' c0āε(t, x)− c0σ.

To find the corrector ψ for the barrier, we consider the ansatz

vε(t, x) ' φ
(
d(t, x)

ε

)
+ ε |ln ε|ψ

(
d(t, x)

ε

)
− ε |ln ε| σ̃,

where the function ψ is to be determined and σ̃ > 0 is a small, given constant. Assume for
now that ψ is smooth and bounded with bounded derivative.

Since vε is a supersolution to (1.1), then heuristically, there is a σ > 0 such that

(4.6) ε∂tv
ε =

1

ε |ln ε|
(εInvε −W ′(vε))− σ.
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Plugging the ansatz into (4.6), the left-hand side gives

(4.7) ε∂tv
ε ' φ̇

(
d

ε

)
∂td+ ε |ln ε| ψ̇

(
d

ε

)
∂td ' φ̇

(
d

ε

)
∂td,

where we use that ψ̇ and ∂td are bounded. Next, we look at the right-hand side of (4.6) for
the ansatz. First, we use the equation for φ (see (1.2)) and estimates on aε (see Lemmas 3.6,
3.7, 3.9) to find that

(4.8)

ε

ε |ln ε|
In[vε] ' ε

ε |ln ε|
In
[
φ

(
d

ε

)]
+ εIn

[
ψ

(
d

ε

)]
=

1

ε |ln ε|

(
εIn

[
φ

(
d

ε

)]
− CnI1[φ]

(
d

ε

))
+

1

ε |ln ε|
CnI1[φ]

(
d

ε

)
+

(
εIn

[
ψ

(
d

ε

)]
− CnI1[ψ]

(
d

ε

))
+ CnI1[ψ]

(
d

ε

)
' 1

ε |ln ε|
aε

(
d

ε

)
+

1

ε |ln ε|
W ′
(
φ

(
d

ε

))
+ CnI1[ψ]

(
d

ε

)
.

On the other hand, we do a Taylor expansion for W ′ around φ(d/ε) to estimate
(4.9)

1

ε |ln ε|
W ′(vε) ' 1

ε |ln ε|

[
W ′
(
φ

(
d

ε

))
+W ′′

(
φ

(
d)

ε

))(
vε − φ

(
d

ε

))]
' 1

ε |ln ε|

[
W ′
(
φ

(
d

ε

))
+W ′′

(
φ

(
d

ε

))(
ε |ln ε|ψ

(
d

ε

)
− ε |ln ε| σ̃

)]
.

Equating (4.7) with (4.8) and (4.9), the equation for the ansatz gives

(4.10)

φ̇

(
d

ε

)
∂td '

1

ε |ln ε|
aε

(
d

ε

)
+ CnI1[ψ]

(
d

ε

)
−W ′′

(
φ

(
d

ε

))
ψ

(
d

ε

)
+ σ̃W ′′

(
φ

(
d

ε

))
− σ.

Rearranging and using (4.5), we have

−CnI1[ψ]

(
d

ε

)
+W ′′

(
φ

(
d

ε

))
ψ

(
d

ε

)
' 1

ε |ln ε|
aε

(
d

ε

)
− φ̇

(
d

ε

)
∂td+ σ̃W ′′

(
φ

(
d

ε

))
− σ

' 1

ε |ln ε|
aε

(
d

ε

)
− φ̇

(
d

ε

)
c0āε + c0σφ̇

(
d

ε

)
+ σ̃W ′′

(
φ

(
d

ε

))
− σ.

We let ψ be the solution to this equation. In particular, let L be the linearized operator in
(3.8). Then, that corrector ψ satisfies the equation

(4.11)

L[ψ]

(
d(t, x)

ε

)
=

1

ε |ln ε|
aε

(
d(t, x)

ε

)
− φ̇

(
d(t, x)

ε

)
c0āε(t, x)

+ c0σφ̇

(
d(t, x)

ε

)
+ σ̃W ′′

(
φ

(
d(t, x)

ε

))
− σ,

as desired. See (3.9) with σ = W ′′(0)σ̃.
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In order to check the validity equation (4.11), at least formally, we freeze a point (t, x)
near Γ1

t . Let ξ = d(t, x)/ε and assume separation of scales. We multiply both sides of (4.11)

by φ̇(ξ) and integrate over R to writeˆ
R
L[ψ] (ξ) φ̇(ξ) dξ =

ˆ
R

(
1

ε |ln ε|
aε (ξ)− φ̇ (ξ) c0āε(t, x)

)
φ̇(ξ) dξ

+

ˆ
R

(
c0σφ̇ (ξ) + σ̃W ′′ (φ (ξ))− σ

)
φ̇(ξ) dξ.

Since I1 is self-adjoint and φ satisfies (1.2), the left-hand side of the equation givesˆ
R
L[ψ]φ̇ dξ =

ˆ
R

(
−CnI1[φ̇] +W ′′ (φ) φ̇

)
ψ dξ

=

ˆ
R

d

dξ

(
−CnI1[φ] +W ′ (φ)

)
ψ dξ = 0.

To show that the right-hand side is also zero, we first use the definitions of āε and c0 to findˆ
R

(
1

ε |ln ε|
aε (ξ)− φ̇ (ξ) c0āε(t, x)

)
φ̇(ξ) dξ =

1

ε |ln ε|

ˆ
R
aε (ξ) φ̇(ξ) dξ − āε(t, x) = 0.

Then, we use that W ′ is periodic to find thatˆ
R
σ̃W ′′ (φ(ξ)) φ̇(ξ) dξ = σ̃

ˆ
R

d

dξ
[W ′ (φ(ξ))] dξ = σ̃[W ′(1)−W ′(0)] = 0

and the definition of c0 to see thatˆ
R

(
c0σφ̇(ξ)− σ

)
φ̇(ξ) dξ = c0σ

ˆ
R

[φ̇(ξ)]2 dξ − σ = 0,

as desired.

Remark 4.1. Notice that ψ depends on the distance function d(t, x). Hence, when N > 1,
we have a finite sequence of correctors, denoted by ψ1, . . . , ψN , depending on the signed
distance function di(t, x) to the front Γit, i = 1, . . . , N .

Remark 4.2. To see that σ = W ′′(0)σ̃, assume that d(t, x) << −1 and ψ ≡ 0. Then,
(t, x) ∈ −Ω1

t is far from the front Γ1
t which implies φ(d(t, x)/ε) ≈ 0 and aε((t, x)/ε) ' 0

(which is a consequence of Corollary 7.1). Therefore, in (4.10), we have

0 ' 0 + σ̃W ′′ (0)− σ.

5. Construction of barriers

The main challenge in proving Theorem 1.1 is the construction of strict subsolutions (su-
persolutions) to (1.1). In particular, we will use barriers to prove that a sequence of sets
are generalized super(sub)-flows. We will focus on the construction of subsolutions as the
construction of supersolutions is similar.

Let ϕi(t, x), i = 1, . . . , N , be smooth functions satisfying (i),(ii),(iii) in Definition 2.1.
Moreover, we assume that

(5.1) {(t, x) : ϕi+1(t, x) > 0} ⊂⊂ {(t, x) : ϕi(t, x) > 0} for i = 1, . . . , N − 1.

Let d̃i(t, x) be the signed distance function associated to {x : ϕi(t, x) > 0}. Then, we

can denote the zero level set of ϕi by Γit = {x : d̃i(t, x) = 0}. As a consequence of (iii) in

Definition 2.1, there is a ρ > 0 such that d̃i(t, x) is smooth in the set

Qiρ = {(t, x) : |d̃i(t, x)| ≤ ρ}
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and |∇d̃i| = 1 in Qiρ. Moreover, by (5.1), and perhaps making ρ smaller, we can assume that

Qiρ ∩Q
j
ρ = ∅ for i 6= j. Let di be a smooth, bounded extension of d̃i as defined in Definition

3.3. Similarly, let ei(t, x) ∈ Sn be such that ei(t, x) = ∇di(t, x) in Qiρ and is smooth and

bounded outside of Qiρ.
As a consequence of (ii) in Definition 2.1, for σ > 0 sufficiently small,

(5.2) ∂tdi ≤ µ tr
(

(I − ∇̂di ⊗ ∇̂di)D2di

)
− c0σ = µ∆di − c0σ in Qiρ.

Let σ̃ > 0 be such that σ = W ′′(0)σ̃. Then, we define smooth barrier vε(t, x) by

(5.3) vε(t, x) =
N∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

ψi

(
di(t, x)− σ̃

ε
; t, x, ei(t, x)

)
− σ̃ε |ln ε| .

Lemma 5.1. For sufficiently small ε, vε is a strict subsolution to

(5.4) ε∂tv
ε − 1

ε |ln ε|
(
εIn[vε]−W ′(vε)

)
< −σ

2
.

Moreover, for ε sufficiently small, vε satisfies

(5.5) − 2σ̃ε |ln ε| ≤ vε(t, x)−
N∑
i=1

1{di(t,·)≥σ̃/2}(x) ≤ − σ̃
2
ε |ln ε| .

Proof. We will break the proof into four main steps. First, we estimate the equation for
vε(t, x) for any (t, x). Then, we will show that vε(t, x) satisfies (5.4) when (t, x) is near a

front Γi0t and then when (t, x) is far from all fronts Γit, i = 1, . . . , N . Lastly, we establish
(5.5) for all (t, x).

For convenience, we use the following notation throughout the proof.

(5.6)

φi := φ

(
di(t, x)− σ̃

ε

)
ψi := ψi

(
di(t, x)− σ̃

ε
; t, x, ei

)
φ̃i := φ

(
di(t, x)− σ̃

ε

)
−H

(
di(t, x)− σ̃

ε

)
āiε := āε (t, x, ei)

aiε := aε

(
di(t, x)− σ̃

ε
; t, x, ei

)
biε := εIn

[
φ

(
di(t, ·)− σ̃

ε

)]
(x)− CnI1[φ]

(
di(t, x)− σ̃

ε

)
.

We note that it will be important for the reader to remember the dependence of ψi and aε
on the variables t, x, e as well as ξ = di(t, x).

Step 1. Computation for vε(t, x) in (1.1) for an arbitrary (t, x) ∈ [0,∞)× Rn.

First, the time derivative of vε at (t, x) is given by

ε∂tv
ε(t, x) =

N∑
i=1

φ̇i ∂tdi(t, x) + ε |ln ε|
N∑
i=1

[(ψi)ξ∂tdi(t, x) + ε(ψi)t + ε(ψi)e∂tei(t, x)] .
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Since

ε∂tv
ε =

N∑
i=1

φ̇i ∂tdi(t, x) +O(ε |ln ε|).

Next, we consider the nonlocal term. For each i = 1, . . . , N , we use that φ satisfies (1.2)
to find

εIn[φi](x) = εIn[φi](x)− CnI1[φ]

(
di(t, x)− σ̃

ε

)
+W ′ (φi) .

Also, using that ψ satisfies (3.9) and Lemma 3.9, we find that

εIn[ψi](x) = εIn[ψi](x)− CnI1[ψi]

(
di(t, x)− σ̃

ε

)
− L[ψ]

(
di(t, ·)− σ̃

ε

)
+W ′′ (φi)ψi

= O(ε1/2)− 1

ε |ln ε|
aiε + φ̇ic0

(
āiε − σ

)
− σ̃

(
W ′′ (φi)−W ′′(0)

)
+W ′′ (φi)ψi.

Therefore, the 1/2-Laplacian of vε can be written as

εIn[vε](x) =

N∑
i=1

[
εIn[φi](x)− CnI1[φ]

(
di(t, x)− σ̃

ε

)
+W ′ (φi)

]

+ ε |ln ε|
N∑
i=1

[
O(ε1/2)− 1

ε |ln ε|
aiε + φ̇ic0

(
āiε − σ

)
− σ̃

(
W ′′ (φi)−W ′′(0)

)
+W ′′ (φi)ψi

]
.

Recall the definitions of φ̃i and biε introduced in (5.6). Since W ′ is periodic, we have that

W ′(φi) = W ′(φ̃i) and similarly for W ′′(φi) = W ′′(φ̃i). Using this, rearranging, and utilizing
the notation biε, we can equivalently write

εIn[vε](x) =

N∑
i=1

[
(biε − aiε) +W ′

(
φ̃i

)]
+ ε |ln ε|

N∑
i=1

[
O(ε1/2) +W ′′(φ̃i)ψi + φ̇ic0

(
āiε − σ

)
− σ̃

(
W ′′(φ̃i)−W ′′(0)

)]
.

Then, the equation for vε at (t, x) can be written as

Eqn(vε) := ε∂tv
ε(t, x)− 1

ε |ln ε|
(
εIn[vε(t, ·)](x)−W ′(vε(t, x))

)
= O(ε |ln ε|) +

N∑
i=1

φ̇i∂tdi(t, x)

− 1

ε |ln ε|

{
N∑
i=1

[
(biε − aiε) +W ′(φ̃i)

]
+ ε |ln ε|

N∑
i=1

[
O(ε1/2) +W ′′(φ̃i)ψi + φ̇ic0

(
āiε − σ

)
− σ̃

(
W ′′(φ̃i)−W ′′(0)

)]

−W ′
(

N∑
i=1

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|

)}
.
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Grouping the error terms, the φ̇i terms, and the nonlinear terms together, we have

Eqn(vε) = O(ε |ln ε|) +O(ε1/2)− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +
N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+

1

ε |ln ε|

{
W ′

(
N∑
i=1

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|

)

−
N∑
i=1

(
W ′(φ̃i) + ε |ln ε|

[
W ′′(φ̃i)ψi − σ̃

(
W ′′(φ̃i)−W ′′(0)

)])}
.

Fix an index i0 ∈ {1, . . . , N}. For the remainder of Step 1, we will conveniently isolate
every term indexed with i0 to help with Step 2. First, we do a Taylor expansion for W ′

around φ̃i0 to obtain

W ′
( N∑
i=1

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|
)

= W ′(φ̃i0) +W ′′(φ̃i0)

∑
i 6=i0

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|


+O

∑
i 6=i0

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|

2 .

By

1

ε |ln ε|
O

∑
i 6=i0

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|

2 =
∑
i 6=i0

O

(
(φ̃i)

2

ε |ln ε|

)
+O(ε |ln ε|).

Hence, we have that

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

O

(
(φ̃i)

2

ε |ln ε|

)

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +

N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+

1

ε |ln ε|

{
W ′(φ̃i0) +W ′′(φ̃i0)

∑
i 6=i0

φ̃i + ε |ln ε|
N∑
i=1

ψi − σ̃ε |ln ε|


−
(
W ′(φ̃i0) + ε |ln ε|

[
W ′′(φ̃i0)ψi0 − σ̃

(
W ′′(φ̃i0)−W ′′(0)

)])
−
∑
i 6=i0

(
W ′(φ̃i) + ε |ln ε|

[
W ′′(φ̃i)ψi − σ̃

(
W ′′(φ̃i)−W ′′(0)

)])}
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where in the last two lines we extracted the i0 term. Cancelling the W ′(φ̃i0) and W ′′(φ̃i0)ψi0
terms then distributing 1/(ε |ln ε|), we simplify to

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

O

(
(φ̃i)

2

ε |ln ε|

)

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +
N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+W ′′(φ̃i0)

∑
i 6=i0

φ̃i
ε |ln ε|

+
∑
i 6=i0

ψi − σ̃

+ σ̃
(
W ′′(φ̃i0)−W ′′(0)

)

−
∑
i 6=i0

[
W ′(φ̃i)

ε |ln ε|
+W ′′(φ̃i)ψi − σ̃

(
W ′′(φ̃i)−W ′′(0)

)]
.

Next, we do a Taylor expansion for W ′ around 0 and recall that W ′(0) = 0 to write

W ′(φ̃i) = W ′(0) +W ′′(0)φ̃i +O((φ̃i)
2) = W ′′(0)φ̃i +O((φ̃i)

2).

With this, we now have that

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

O

(
(φ̃i)

2

ε |ln ε|

)

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +
N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+W ′′(φ̃i0)

∑
i 6=i0

φ̃i
ε |ln ε|

+
∑
i 6=i0

ψi − σ̃

+ σ̃
(
W ′′(φ̃i0)−W ′′(0)

)

−
∑
i 6=i0

[
W ′′(0)φ̃i
ε |ln ε|

+W ′′(φ̃i)ψi − σ̃
(
W ′′(φ̃i)−W ′′(0)

)]
.

We rearrange to group the terms with W ′′(φ̃i0)−W ′′(0) together

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

O

(
(φ̃i)

2

ε |ln ε|

)

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +
N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+
(
W ′′(φ̃i0)−W ′′(0)

)∑
i 6=i0

φ̃i
ε |ln ε|

− σ̃W ′′(0)

+
∑
i 6=i0

[(
W ′′(φ̃i0)−W ′′(φ̃i)

)
ψi + σ̃

(
W ′′(φ̃i)−W ′′(0)

)]
.

Looking at the last line, we Taylor expand W ′′ around 0 to find, for i 6= i0,

(W ′′(φ̃i0)−W ′′(φ̃i))ψi + σ̃
(
W ′′(φ̃i)−W ′′(0)

)
= O(ψi)− σ̃

(
W ′′′(0)φ̃i +O(φ̃i)

2
)

= O(ψi) +O(φ̃i)
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and also

W ′′(φ̃i0)−W ′′(0) = W ′′′(0)φ̃i0 +O((φ̃i0)2) = O(φ̃i0).

Therefore, we have

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

[
O

(
(φ̃i)

2

ε |ln ε|

)
+O(φ̃i) +O(ψi)

]

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) +

N∑
i=1

φ̇i
[
∂tdi(t, x)− c0

(
āiε − σ

)]
+O(φ̃i0)

∑
i 6=i0

φ̃i
ε |ln ε|

− σ

where we also used that σ = W ′′(0)σ̃. Since d is smooth, with Remark 3.5 we have that
∂tdi − c0ā

i
ε + c0σ is bounded independently of ε. Hence, we conclude that

(5.7)

Eqn(vε) = O(ε |ln ε|) +O(ε1/2) +
∑
i 6=i0

(
O

(
(φ̃i)

2

ε |ln ε|

)
+O(φ̃i) +O(φ̇i) +O(ψi) +

O(φ̃i0)φ̃i
ε |ln ε|

)

− 1

ε |ln ε|

N∑
i=1

(biε − aiε) + φ̇i0 [∂tdi0(t, x)− c0(āi0ε − σ)]− σ

Step 2. vε(t, x) satisfies (5.4) when (t, x) is near the front Γi0t .

Assume that |di0(t, x)− σ| ≤ |ln ε|−1/2 for some index 1 ≤ i0 ≤ N . Then, for ε sufficiently
small,

|di(t, x)− σ| ≥ |ln ε|−1/2 for all i 6= i0.

We begin by estimating the error terms in (5.7) for i 6= i0. First, we use (3.2) to estimate

|φ̃i| ≤
∣∣∣∣φ(di(t, x)− σ

ε

)
−H

(
di(t, x)− σ

ε

)
+

ε

α(di(t, x)− σ)

∣∣∣∣+

∣∣∣∣ ε

α(di(t, x)− σ)

∣∣∣∣
≤ Cε2

|di(t, x)− σ|2
+

ε

α |di(t, x)− σ|

≤ Cε2 |ln ε|+ ε |ln ε|1/2

α

= O(ε |ln ε|1/2),

from which it follows that

(5.8)
|φ̃i|
ε |ln ε|

≤ O(|ln ε|−1/2) and
|φ̃i|2

ε |ln ε|
≤ O(ε).

Next, we use (3.3) to find that

(5.9) |φ̇i| ≤
Cε2

|di(t, x)− σ|2
≤ O(ε2 |ln ε|)
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By Lemma [estimates on ψ], O(ψi) = o(1). Combining the above estimates in view of (5.7),
we have∑

i 6=i0

(
O

(
(φ̃i)

2

ε |ln ε|

)
+O(φ̃i) +O(φ̇i) +O(ψi) +

O(φ̃i0)φ̃i
ε |ln ε|

)
≤ O(ε) +O(ε |ln ε|1/2) +O(ε2 |ln ε|) + o(1) +O(|ln ε|−1/2)

To check the mean curvature term, we use that φ̇i0 ≥ 0, (5.2), and Lemma 3.4 to estimate

φ̇i0 [∂tdi0(t, x)− c0(āi0ε − σ)] = φ̇i0
(
[∂tdi0(t, x)− µ∆di0(t, x) + c0σ] + [µ∆di0(t, x)− c0ā

i0
ε ]
)

≤ φ̇i0(0 + o(1)) = o(1).

Lastly, by Lemma 3.6 and Lemma 3.7,

(5.10)

1

ε |ln ε|

N∑
i=1

∣∣biε − aiε∣∣ =
1

ε |ln ε|
∑
i 6=i0

∣∣biε − aiε∣∣
≤ 1

ε |ln ε|
∑
i 6=i0

Cε

|ln ε|−1/2
= O(|ln ε|−1/2).

Consequently, in (5.7), we have that

Eqn(vε) ≤ O(ε |ln ε|) +O(ε1/2)

+O(ε) +O(ε |ln ε|1/2) +O(ε2 |ln ε|) + o(1) +O(|ln ε|−1/2)− σ.

Taking ε sufficiently small, (5.3) holds.

Step 3. vε(t, x) satisfies (5.4) when (t, x) is away from all fronts Γit.

Assume that for all i = 1, . . . , N ,

|di(t, x)− σ| ≥ |ln ε|−1/2 .

Then, estimating φ̇i0 exactly as in (5.9) and using Remark 3.5 to note that ∂tdi0−c0ā
i0
ε +c0σ

is bounded, we find that∣∣∣φ̇i0 (∂tdi0(t, x)− c0ā
i0
ε + c0σ

)∣∣∣ ≤ O(ε2 |ln ε|).

With this, (5.8), and (5.10) (without dropping the i = i0 term), we have that (5.7) gives

Eqn(vε) ≤ O(ε |ln ε|) +O(ε1/2)

+O(ε) +O(ε |ln ε|1/2) +O(ε2 |ln ε|) + o(1) +O(|ln ε|−1/2)− σ.

Taking ε sufficiently small, (5.3) holds.

Step 4. vε(t, x) satisfies (5.5).

It is enough to show vε satisfies the following.

(1) In the set {dN (t, x) ≥ σ̃/2}:

N − 2σ̃ε |ln ε| ≤ vε ≤ N − σ̃

2
ε |ln ε| .

(2) In the set {di+1(t, x) < σ̃/2 ≤ di(t, x)} for i = 1, . . . , N − 1:

i− 2σ̃ε |ln ε| ≤ vε ≤ i− σ̃

2
ε |ln ε| .
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(3) In the set {d1(t, x) < σ̃/2}:

−2σ̃ε |ln ε| ≤ vε ≤ −
σ̃

2
ε |ln ε| .

We begin with (2). For a fixed 1 ≤ i0 ≤ N − 1, let (t, x) be such that di0+1(t, x) < σ̃
2 ≤

di0(t, x). Note that

− 1

di(t, x)− σ̃
<

2

σ̃
for all i0 + 1 ≤ i ≤ N.

Then, by (3.2) and [estimate for ψ], for ε small we have
(5.11)

vε(t, x) =

N∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

ψi − σ̃ε |ln ε|

=

i0∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+

N∑
i=i0+1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

O(ψi)− σ̃ε |ln ε|

≤
i0∑
i=1

1 +
N∑

i=i0+1

(
0− ε

α(di(t, x)− σ̃)
+

Cε2

(di(t, x)− σ̃)2

)
+ ε |ln ε|

N∑
i=1

O(ψi)− σ̃ε |ln ε|

≤ i0 +

N∑
i=10+1

(
ε

α(σ̃/2)
+

Cε2

(σ̃/2)2

)
+ ε |ln ε|

N∑
i=1

O(ψi)− σ̃ε |ln ε|

≤ i0 −
σ̃

2
ε |ln ε| .

On the other hand,

− 1

di(t, x)− σ̃
≥ 2

σ̃
≥ 0 for all 1 ≤ i ≤ i0.

Hence, for ε small, we similarly estimate from below using that φ ≥ 0 to find
(5.12)

vε(t, x) =
N∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

ψi − σ̃ε |ln ε|

=

i0∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+

N∑
i=i0+1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

O(ψi)− σ̃ε |ln ε|

≥
i0∑
i=1

(
1− ε

α(di(t, x)− σ̃)
− Cε2

(di(t, x)− σ̃)2

)
+

N∑
i=i0+1

0 + ε |ln ε|
N∑
i=1

O(ψi)− σ̃ε |ln ε|

≥ i0 +

i0∑
i=1

(
ε

α(σ̃/2)
+

Cε2

(σ̃/2)2

)
+ ε |ln ε|

N∑
i=1

O(ψi)− σ̃ε |ln ε|

≥ i0 − 2σ̃ε |ln ε| .

We now look at (1). Let (t, x) be such that dN (t, x) ≥ σ̃
2 . Then, using that φ ≤ 1, [estimate

for ψ], and taking ε sufficiently small,

vε(t, x) =
N∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

ψi − σ̃ε |ln ε|
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≤
N∑
i=1

1 + ε |ln ε|
N∑
i=1

O(ψi)− σ̃ε |ln ε|

≤ N − σ̃

2
ε |ln ε| .

On the other hand, since di(t, x) ≥ σ̃/2 for all 1 ≤ i ≤ N , we have

− 1

di(t, x)− σ̃
≥ 2

σ̃
≥ 0 for all 1 ≤ i ≤ N.

Estimating as in (5.12), we find that, for ε small,

vε(t, x) ≥ N − 2σ̃ε |ln ε| .

Finally, we show (3). Let (t, x) be such that d1(t, x) < σ̃
2 . Note that

− 1

di(t, x)− σ̃
<

2

σ̃
for all 1 ≤ i ≤ N.

Estimating as in (5.11) for sufficiently small ε, we get

vε(t, x) ≤ 0− σ̃

2
ε |ln ε| .

On the other hand, using that φ ≥ 0, for ε small,

vε(t, x) =
N∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

N∑
i=1

ψi − σ̃ε |ln ε|

≥
N∑
i=1

0 + ε |ln ε|
N∑
i=1

O(ψi)− σ̃ε |ln ε|

≥ −2σ̃ε |ln ε| .

This completes the proof.
�

6. Proof of Theorem 1.1

We apply an adaptation of the abstract method introduced in [2], see also [1].
We define the families of open sets (Di)Ni=1 and (Ei)Ni=1 by

Di = Int

{
(t, x) ∈ (0,∞)× Rn : lim inf

ε→0
∗
uε − i
ε |ln ε|

≥ 0

}
⊂ (0,∞)× Rn

Ei = Int

{
(t, x) ∈ (0,∞)× Rn : lim sup

ε→0
∗
uε − (i− 1)

ε |ln ε|
≤ 0

}
⊂ (0,∞)× Rn.

To define the traces of Di and Ei, we first define the functions χi, χi : (0,∞)×Rn → [−1, 1],
respectively, by

χi = 1Di − 1(Di)c and χi = 1(Ei)c − 1Ei .

Since Di is open, χi is lower semicontinuous, and since (Ei)
c is closed, χi is upper semicon-

tinuous. To ensure that χi and χi remain lower and upper semicontinuous, respectively, at
t = 0, we set

χi(0, x) = lim inf
t→0, y→x

χi(t, y) and χi(0, x) = lim sup
t→0, y→x

χi(t, y).
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Define the traces Di
0 and Ei0 by

Di
0 = {x ∈ Rn : χi(0, x) = 1} and Ei0 = {x ∈ Rn : χi(0, x) = −1}.

To apply the abstract method, we need the following propositions. We delay their proofs.

Proposition 6.1 (Initialization). For each i = 1, . . . , N ,

Ωi
0 ⊂ Di

0 and (Ω
i
0)c ⊂ Ei0.

Proposition 6.2 (Propagation). For each i = 1, . . . , N , the set Di is a generalized super-

flow, and the set Ei is a generalized sub-flow.

For t > 0, define the sets Di
t and Eit by

Di
t = Di ∩ ({t} × Rn) and Eit = Ei ∩ ({t} × Rn).

By the abstract method (see [1, 2]), it follows from Propositions 6.1 and 6.2 that

+Ωi
t ⊂ Di

t ⊂ +Ωi
t ∪ Γit and −Ωi

t ⊂ Eit ⊂ −Ωi
t ∪ Γit.

The conclusion readily follows; we provide the details for completeness.
First, since +Ωi

t ⊂ Di
t, we use the definition of Di

t to see that

(6.1) lim inf
ε→0

∗u
ε(t, x) ≥ i for x ∈ +Ωi

t.

Using that −Ωi+1
t ⊂ Ei+1

t , we similarly get

(6.2) lim sup
ε→0

∗u
ε(t, x) ≤ (i+ 1)− 1 = i for x ∈ −Ωi+1

t .

Therefore, for i = 1, . . . , N − 1,

lim
ε→0

uε(t, x) = i in +Ωi
t ∩ −Ωi+1

t .

Next, by the comparison principle, 0 ≤ uε ≤ N . Consequently,

0 ≤ lim inf
ε→0

∗u
ε and lim sup

ε→0
∗u
ε ≤ N.

Hence, together with (6.1) we have

lim
ε→0

uε(t, x) = N in +ΩN
t ,

and with (6.2) we have
lim
ε→0

uε(t, x) = 0 in −Ω1
t .

It remains to prove Propositions 6.1 and 6.2. We begin with the initialization.

6.1. Proof of Proposition 6.1.

Proof. We will prove that Ωi0
0 ⊂ D

i0
0 for all 1 ≤ i0 ≤ N . The proof of (Ω

i0
0 )c ⊂ Ei00 is similar.

Fix i0, a point x0 ∈ Ωi0
0 , and a small constant σ̃ > 0. To prove that x0 ∈ Di0

0 , it is enough
to show that, for all (t, x) in a neighborhood of (0, x0),

lim inf
ε→0

∗
uε(t, x)− i0
ε |ln ε|

≥ 0.

For this, we will use (5.3) to construct a suitable subsolution vε ≤ uε, depending on σ̃.
We begin by defining smooth functions ϕi for each i = 1, . . . , i0 that satisfy conditions

(i),(ii),(iii) in Definition 2.1. For this, we first let ri > 0 be given by

ri = di(x0)− σ̃

2
, i = 1, . . . , i0,
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where di is given in (1.3). Note that Bri(x0) ⊂⊂ Ωi
0 and ri − ri+1 = di(x0) − di+1(x0) ≥

d(Γi0,Γ
i+1
0 ). Define the smooth functions ϕi(x), i = 1, . . . , i0, by

ϕi(t, x) = (ri − Ct)2
+ − |x− x0|2

for a large constant C > 0, to be determined. It is easy to check that the signed distance
function d̃i(t, x) associated to {x : ϕi(t, x) > 0} is

(6.3) d̃i(t, x) = ri − Ct− |x− x0|

and that

{(t, x) : ϕi(t, x) > 0} =
⋃
t≥0

{t} ×Bri−Ct(x0).

Hence, (i) in Definition 2.1 is satisfied. Next, we see that

∇ϕi(t, x) = (−2C(ri − Ct),−2(x− x0))

and, for t < ri0/(2C), we have

∂tϕi − µ tr
(

(I − ∇̂xϕi ⊗ ∇̂xϕi)D2
xϕi

)
= −2C(ri − Ct) + 2µ (n− 1)

≤ −2C(ri0 − Ct) + 2µ (n− 1)

≤ −Cri0 + 2µ (n− 1)

≤ −c0σ

for C > 0 sufficiently large. Hence, (ii),(iii) in Definition 2.1 are satisfied.

Let ρ and di be such that di is a smooth, bounded extension of d̃i outside of Qiρ as in

Definition 3.3. Similarly, let ei(t, x) ∈ Sn be such that ei(t, x) = ∇di(t, x) in Qiρ and is

smooth and bounded outside of Qiρ. Let vε = vε(t, x) be given by

vε(t, x) =

i0∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

i0∑
i=1

ψi

(
di(t, x)− σ̃

ε
, t, x, ei

)
− σ̃ε |ln ε| .

By Lemma 5.1 (with N = i0), we have that vε is a subsolution to (5.4) in [0, ri0/(2C)]×Rn.
We claim that vε ≤ uε in a neighborhood N (0, x0) ⊂ {di0(t, x) ≥ σ̃/2}. Let x be such that

di0(0, x) ≥ σ̃/2. Then di(x) ≥ σ̃/2 for all i = 1, . . . , i0, and we use (3.2) to estimate

uε(0, x) ≥
i0∑
i=1

φ

(
di(x)

ε

)

≥
i0∑
i=1

(
1− ε

αdi(x)
− Cε2

(di(x))2

)

≥
i0∑
i=1

(
1− 2ε

ασ̃
− 4Cε2

σ̃2

)
= i0 −

(
2ε

ασ̃
+

4Cε2

σ̃2

)
i0

≥ i0 −
(

2ε

ασ̃
+

4Cε2

σ̃2

)
N

≥ i0 −
σ̃

2
ε |ln ε| ,
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for ε sufficiently small. For each 1 ≤ i < i0, we can similarly show that

uε(0, x) ≥ i− σ̃

2
ε |ln ε| in

{
x : di(0, x) ≥ σ̃

2

}
.

On the other hand, when d1(0, x) < σ̃
2 , we simply have

uε(0, x) =

N∑
i=1

φ

(
di(x)

ε

)
≥ 0 > − σ̃

2
ε |ln ε| .

Therefore, by the second inequality in (5.5), we have

uε(0, x) ≥
i0∑
i=1

1{di(0,·)≥σ̃/2}(x)− σ̃

2
ε |ln ε| ≥ vε(0, x).

By the comparison principle, the claim holds. Consequently, by the first inequality in (5.5),
we have

lim inf
ε→0

∗
uε(t, x)− i0
ε |ln ε|

≥ lim inf
ε→0

∗
vε(t, x)− i0
ε |ln ε|

≥ −2σ̃ in N (0, x0).

Letting σ̃ → 0, the result follows. �

6.2. Proof of Proposition 6.2.

Proof. Fix 1 ≤ i0 ≤ N . We will show that Di0 is a generalized super-flow. The proof that

Ei0 is a generalized sub-flow is similar.
Let (t0, x0) ∈ (0,∞) × Rn, h > 0, and ϕi0 be a smooth function satisfying (i)-(iv) in

Definition 2.1. For i = 1, . . . , i0− 1, define the smooth functions ϕi : [t0, t0 +h]×Rn → R by

ϕi(t, x) := ϕi0(t, x) + c0

(
i0 − i
i0 − 1

)
,

where c0 > 0 is a small constant. Since the mean curvature equation is geometric, ϕi satisfies
(ii) in Definition 2.1. Notice that

{(t, x) ∈ [t0, t0+h]×Rn : ϕi(t, x) ≥ 0} =

{
(t, x) ∈ [t0, t0+h]×Rn : ϕi0(t, x) ≥ −c0

(
i0 − i
i0 − 1

)}
.

Since ϕi0 is smooth, we can take c0 sufficiently small to guarantee that ϕi, i = 1, . . . , i0 − 1,
also satisfies (i),(iii) in Definition 2.1. Moreover, (5.1) holds. Lastly, since Di ⊂⊂ Dj for all
i < j, we have that

{x ∈ B(x, r) : ϕi(t0, x) ≥ 0} =

{
x ∈ B(x, r) : ϕi0(t0, x) ≥ −c0

(
i0 − i
i0 − 1

)}
⊂ Di

t0

by making c0 smaller, if necessary. Therefore, ϕi also satisfies (iv) in Definition 2.1.

Let d̃i(t, x) be the signed distance function associated to {(t, x) : ϕi(t, x) ≥ 0}. Let ρ and

di be such that di is a smooth, bounded extension of d̃i outside of Qiρ as in Definition 3.3.

Similarly, let ei(t, x) ∈ Sn be such that ei(t, x) = ∇di(t, x) in Qiρ and is smooth and bounded

outside of Qiρ.
By the initial condition (iv), we have that

{x : di(t0, x) ≥ 0} = {x : ϕi(t0, x) ≥ 0} ⊂ Di
t0 =

{
x : lim inf

ε→0
∗
uε(t0, x)− i
ε |ln ε|

≥ 0

}
.



24 STEFANIA PATRIZI AND M. VAUGHAN

Therefore,

{x : di(t0, x) ≥ σ̃/2} ⊂
{
x : lim inf

ε→0
∗
uε(t0, x)− i
ε |ln ε|

≥ 0

}
,

which further gives that

uε(t0, x) ≥ i− σ̃

2
ε |ln ε| in {x : di(t0, x) ≥ σ̃/2}.

In particular,

uε(t0, x) ≥
i0∑
i=1

1{di(t0,·)≥σ̃/2}(x)− σ̃

2
ε |ln ε| .

Let vε = vε(t, x) be given by

vε(t, x) =

i0∑
i=1

φ

(
di(t, x)− σ̃

ε

)
+ ε |ln ε|

i0∑
i=1

ψi

(
di(t, x)− σ̃

ε
; t, x, ei

)
− σ̃ε |ln ε| .

By Lemma 5.1, we have that vε is a subsolution to (5.4) in [t0, t0 + h] × Rn. Moreover, by
the second inequality in (5.5), we have that

uε(t0, x) ≥
i0∑
i=1

1{di(t0,·)≥σ̃/2}(x)− σ̃

2
ε |ln ε| ≥ vε(t0, x).

By the comparison principle, uε ≥ vε on [t0, t0 + h]× Rn. By the first inequality in (5.5),
we have that

uε(t0 + h, x)− i
ε |ln ε|

≥ vε(t0 + h, x)− i
ε |ln ε|

≥ −2σ̃ in {di(t0 + h, x) > σ̃/2}.

Taking σ̃ → 0, it follows that

{x : ϕi(t0 + h, x) ≥ 0} = {x : di(t0 + h, x) ≥ 0} ⊂
{
x : lim inf

ε→0
∗
uε(t0 + h, x)− i

ε |ln ε|
≥ 0

}
.

as desired. �

7. Appendix

In this section, we prove the estimates stated in Section 3.
First, we will prove Lemmas 3.6 and 3.7. That is, we will establish the relationship between

aε and fractional Laplacians of φ. It will be convenience to first split aε into two terms

(7.1)

aε =

ˆ
Rn

(
φ

(
ξ + e · z +

d(t, x+ εz)− d(t, x)−∇d(t, x) · εz
ε

)
− φ(ξ)

)
dz

|z|n+1

−
ˆ
Rn

(φ (ξ + e · z)− φ(ξ))
dz

|z|n+1

where, by Lemma 3.2, the second integral is exactly CnI1[φ](ξ).

Proof of Lemma 3.6. From (7.1) with ξ = d(t, x)/ε and e = ∇d(t, x), we write

aε

(
d(t, x)

ε
; t, x,∇d(t, x)

)
=

ˆ
Rn

(
φ

(
d(t, x+ εz)

ε

)
− φ

(
d(t, x)

ε

))
dz

|z|n+1 − CnI1[φ]

(
d(t, x)

ε

)
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= ε

ˆ
Rn

(
φ

(
d(t, x+ z)

ε

)
− φ

(
d(t, x)

ε

))
dz

|z|n+1 − CnI1[φ]

(
d(t, x)

ε

)
= εIn

[
φ

(
d(t, ·)
ε

)]
(x)− CnI1[φ]

(
d(t, x)

ε

)
.

�

Proof of Lemma 3.7. Recalling (7.1), we want to estimate

aε

(
d(t, x)

ε
; t, x, e

)
−
[
εIn

[
φ

(
d(t, ·)
ε

)]
(x)− CnI1[φ]

(
d(t, x)

ε

)]
=

ˆ
Rn

(
φ

(
d(t, x+ εz) + (e−∇d(t, x)) · εz

ε

)
− φ

(
d(t, x)

ε

))
dz

|z|n+1 − εIn
[
φ

(
d(t, ·)
ε

)]
(x)

=

ˆ
Rn

(
φ

(
d(t, x+ εz) + (e−∇d(t, x)) · εz

ε

)
− φ

(
d(t, x+ εz)

ε

))
dz

|z|n+1 .

Let 0 < δ < 1 be a small constant, to be determined. We split the integral into two pieces

I =

ˆ
|z|<δρ/ε

(
φ

(
d(t, x+ εz) + (e−∇d(t, x)) · εz

ε

)
− φ

(
d(t, x+ εz)

ε

)
− φ̇

(
d(t, x+ εz)

ε

)
(e−∇d(t, x)) · z

)
dz

|z|n+1

II =

ˆ
|z|>δρ/ε

(
φ

(
d(t, x+ εz) + (e−∇d(t, x)) · εz

ε

)
− φ

(
d(t, x+ εz)

ε

))
dz

|z|n+1 .

For the long-range interactions, we simply estimate

|II| ≤ 2‖φ‖∞
ˆ
|z|>δρ/ε

dz

|z|n+1 =
Cε

δρ
,

where C = C(n, φ). Consider the short-range interactions in I. For each |z| < δρ/ε, there is
a 0 ≤ τ ≤ 1 such that

φ

(
d(t, x+ εz)

ε
+ (e−∇d(t, x)) · z

)
− φ

(
d(t, x+ εz)

ε

)
− φ̇

(
d(t, x+ εz)

ε

)
(e−∇d(t, x)) · z

= φ̈

(
d(t, x+ εz)

ε
+ τ(e−∇d(t, x)) · z

)
|(e−∇d(t, x)) · z|2 .

For all 0 ≤ τ ≤ 1 and |z| < δρ/ε, we notice that

τ |(e−∇d(t, x)) · z| ≤ |e−∇d(t, x)| δρ
ε
.

and ∣∣∣∣d(t, x+ εz)

ε

∣∣∣∣ ≥ |d(t, x)|
ε

− |z| ≥ ρ

ε
− δρ

ε
= (1− δ)ρ

ε
.

Consequently,∣∣∣∣d(t, x+ εz)

ε
+ τ(e−∇d(t, x)) · z

∣∣∣∣ ≥ ∣∣∣∣d(t, x+ εz)

ε

∣∣∣∣− τ |(e−∇d(t, x)) · z|

≥ (1− δ)ρ
ε
− |e−∇d(t, x)| δρ

ε

= (1/δ − (1 + |e−∇d(t, x)|)) δρ
ε

=
ρ

2ε
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when we choose δ = δ(e, d) to be

δ =
1

2

1

1 + |e−∇d(t, x)|
.

Note that |e−∇d(t, x)| ≤ 1 + |d(t, x)| implies that

1

2(2 + |∇d(t, x)|)
≤ δ ≤ 1

2
.

In particular, δ can be bounded from above and below independently of e. By (3.3), we have

sup
0≤τ≤1

∣∣∣∣φ̈(d(t, x+ εz)

ε
+ τ(e−∇d(t, x)) · z

)∣∣∣∣ ≤ C(
d(t,x+εz)

ε + τ(e−∇d(t, x)) · z
)2 ≤

Cε2

ρ2
.

We can now estimate∣∣∣∣φ(d(t, x+ εz)

ε
+ (e−∇d(t, x)) · z

)
− φ

(
d(t, x+ εz)

ε

)
− φ̇

(
d(t, x+ εz)

ε

)
(e−∇d(t, x)) · z

∣∣∣∣
≤ sup

0≤τ≤1

∣∣∣∣φ̈(d(t, x+ εz)

ε
+ τ(e−∇d(t, x)) · z

)∣∣∣∣ |(e−∇d(t, x)) · z|2

≤ Cε2

ρ2
|(e−∇d(t, x)) · z|2

≤ Cε2

ρ2
(1 + |∇d(t, x)|2) |z|2 .

Finally, we estimate the short-range interactions,

|I| ≤ Cε2

ρ2

ˆ
|z|<δρ/ε

|z|2 dz

|z|n+1 =
Cε2

ρ2

(
δρ

ε

)
≤ C ε

ρ
.

Combing the estimates, we conclude that

|I|+ |II| ≤ C
(
ε

δρ
+
ε

ρ

)
≤ C ε

ρ
,

which completes the proof. �

The following corollary is used to justify some of the formal computations in Section 4.

Corollary 7.1. Let d be as in Definition 3.3. If |d(t, x)| > ρ, then there is a constant
C = C(n, φ, d) > 0 such that, for any unit vector e,∣∣∣∣aε(d(t, x)

ε
; t, x, e

)∣∣∣∣ ≤ Cε

ρ
.

Proof. By Lemma 3.7, we have that∣∣∣∣aε(d(t, x)

ε
; t, x, e

)∣∣∣∣ ≤ ∣∣∣∣aε(d(t, x)

ε
; t, x, e

)
−
[
εIn

[
φ

(
d(t, ·)
ε

)]
(x)− CnI1[φ]

(
d(t, x)

ε

)]∣∣∣∣
+

∣∣∣∣εIn [φ(d(t, ·)
ε

)]
(x)

∣∣∣∣+ Cn

∣∣∣∣I1[φ]

(
d(t, x)

ε

)∣∣∣∣
≤ Cε

ρ
+

∣∣∣∣εIn [φ(d(t, ·)
ε

)]
(x)

∣∣∣∣+ Cn

∣∣∣∣I1[φ]

(
d(t, x)

ε

)∣∣∣∣ .
Using the same techniques as in the proof of Lemma 3.7, we can show that both fractional
Laplacian terms are controlled by ε/ρ. �
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The next lemma is a more general estimate on aε which is used to establish properties of
ψ.

Lemma 7.2. There is a constant C = C(n, φ, d) > 0 such that

|aε (ξ; t, x, e)| ≤ Cε1/2.

Proof. Begin by writing

aε =

ˆ
|z|<1/ε1/2

(
φ

(
ξ + e · z +

d(t, x+ εz)− d(t, x)−∇d(t, x) · εz
ε

)
− φ (ξ + e · z)

)
dz

|z|n+1

+

ˆ
|z|>1/ε1/2

(
φ

(
ξ + e · z +

d(t, x+ εz)− d(t, x)−∇d(t, x) · εz
ε

)
− φ (ξ + e · z)

)
dz

|z|n+1

=: I + II.

For the long-range interactions,

|II| ≤ 2 ‖φ‖∞
ˆ
|z|>1/ε1/2

dz

|z|n+1 = Cε1/2.

For the short range interactions, we use the mean value theorem and Taylor’s theorem to
estimate

|I| ≤ ‖φ̇‖∞
ˆ
|z|<1/ε1/2

|d(t, x+ εz)− d(t, x)−∇d(t, x) · εz|
ε

dz

|z|n+1

≤ ‖φ̇‖∞
∥∥D2d

∥∥
∞

ˆ
|z|<1/ε1/2

ε |z|2 dz

|z|n+1

=
Cε

ε1/2
= Cε1/2.

The conclusion follows. �

We end the paper with the proof of Lemma 3.9 for ψ. if we need it. . .

Proof of Lemma 3.9. For convenience, we drop the t notation. We begin by using Lemma
3.2 for ψ and a change of variables to write a single integral expression

εIn
[
ψ

(
d(t, ·)
ε

, t, ·, e(t, ·)
)]

(x)− CnI1[ψ (·; t, x, e)]
(
d(t, x)

ε

)
= ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x)

ε
;x, e(x)

))
dy

|y|n+1

−
ˆ
Rn

(
ψ

(
d(t, x)

ε
+ e(x) · z;x, e(x)

)
− ψ

(
d(t, x)

ε
;x, e(x)

))
dz

|z|n+1

= ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x)

ε
;x, e(x)

))
dy

|y|n+1

− ε
ˆ
Rn

(
ψ

(
d(x) + e(x) · y

ε
;x, e(x)

)
− ψ

(
d(x)

ε
;x, e(x)

))
dy

|y|n+1

= ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x) + e(x) · y

ε
;x, e(x)

))
dy

|y|n+1 .

Furthermore, we can write this expression as

εIn
[
ψ

(
d(t, ·)
ε

; t, ·, e(t, ·)
)]

(x)− CnI1[ψ (·; t, x, e)]
(
d(t, x)

ε

)
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= ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x+ y)

))
dy

|y|n+1

+ ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x)

))
dy

|y|n+1

+ ε

ˆ
Rn

(
ψ

(
d(x+ y)

ε
;x, e(x)

)
− ψ

(
d(x) + e(x) · y

ε
;x, e(x)

))
dy

|y|n+1

=: I + II + III.

We will show that I, II = O(ε) and III = O(ε1/2).
First, observe that

|I| ≤ ε
ˆ
|y|<1

∣∣∣∣ψ(d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x+ y)

)
−∇xψ

(
d(x+ y)

ε
;x, e(x+ y)

)
· y
∣∣∣∣ dy

|y|n+1

+ ε

ˆ
|y|≥1

∣∣∣∣ψ(d(x+ y)

ε
;x+ y, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x+ y)

)∣∣∣∣ dy

|y|n+1

≤ε
∥∥D2

xψ
∥∥
∞

ˆ
|y|<1

|y|2 dy

|y|n+1 + 2ε ‖ψ‖∞
ˆ
|y|≥1

dy

|y|n+1

≤ Cn,ψε

and similarly

|II| ≤ ε
ˆ
|y|<1

∣∣∣∣ψ(d(x+ y)

ε
;x, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x)

)
− ψe

(
d(x+ y)

ε
;x, e(x)

)
· y
∣∣∣∣ dy

|y|n+1

+ ε

ˆ
|y|≥1

∣∣∣∣ψ(d(x+ y)

ε
;x, e(x+ y)

)
− ψ

(
d(x+ y)

ε
;x, e(x)

)∣∣∣∣ dy

|y|n+1

≤ε ‖ψee‖∞
ˆ
|y|<1

|y|2 dy

|y|n+1 + 2ε ‖ψ‖∞
ˆ
|y|≥1

dy

|y|n+1

≤ Cn,ψε.

For III, we use the mean value theorem and Taylor’s theorem to estimate

|III| ≤ ε
ˆ
|y|<
√
ε

∣∣∣∣ψ(d(x+ y)

ε
;x, e(x)

)
− ψ

(
d(x)− e(x) · y

ε
;x, e(x)

)∣∣∣∣ dy

|y|n+1

+ ε

ˆ
|y|≥
√
ε

∣∣∣∣ψ(d(x+ y)

ε
;x, e(x)

)
− ψ

(
d(x) + e(x) · y

ε
;x, e(x)

)∣∣∣∣ dy

|y|n+1

≤ε‖ψ̇‖∞
ˆ
|y|<
√
ε

|d(x+ y)− d(x)− e(x) · y|
ε

dy

|y|n+1 + 2ε ‖ψ‖∞
ˆ
|y|≥
√
ε

dy

|y|n+1

≤ ‖ψ̇‖∞
∥∥D2d

∥∥
∞

ˆ
|y|<
√
ε
|y|2 dy

|y|n+1 + Cn,ψ
ε√
ε

= Cn,ψ,d
√
ε.

�



MULTIPLE INTERPHASES FOR FRACTIONAL ALLEN-CAHN EQUATION 29

References

[1] G. Barles and F. Da Lio, A geometrical approach to front propagation problems in bounded domains
with Neumann-type boundary conditions, Interfaces Free Bound. 5 (2003), 239–274.

[2] G. Barles and P. E. Souganidis, A new approach to front propagation problems: theory and applications,
Arch. Rational Mech. Anal. 141 (1998), 237–296.
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