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1. Introduction

We consider homogenization problems for first order Hamilton-Jacobi equations

with uε/ε periodic dependence, namely

{
uε

t + H
(

t
ε ,

x
ε , uε

ε , Duε
)

= 0, (t, x) ∈ (0, +∞) × R
N ,

uε(0, x) = u0(x), x ∈ R
N (1.1)

with the following assumptions on the Hamiltonian H :

1
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(H1) Periodicity: for any (t, x, u, p) ∈ R × R
N × R × R

N

H(t + 1, x + k, u + 1, p) = H(t, x, u, p) for any k ∈ Z
N ;

(H2) Regularity: H : R×R
N ×R×R

N → R is Lipschitz continuous and there exists

a constant C1 > 0 such that, for almost every (t, x, u, p) ∈ R × R
N × R × R

N

|D(t,x)H(t, x, u, p)| ≤ C1(1+|p|), |DuH(t, x, u, p)| ≤ C1, |DpH(t, x, u, p)| ≤ C1;

(H3) H(t, x, u, p) → +∞ as |p| → +∞ uniformly for (t, x, u) ∈ R × R
N × R;

(H4) There exists a constant C such that for almost every (t, x, u, p) ∈ R × R
N ×

R × R
N

|DpH(t, x, u, p) · p − H(t, x, u, p)| ≤ C.

Typically, our model Hamiltonian is

H(t, x, u, p) = a(t, x)|p| + b(t, x, u),

where a and b are Lipschitz continuous and periodic functions, with a > 0;

Problem (1.1) with H independent of t was introduced by Imbert and Monneau
16 as a simplified model for dislocation dynamics in material science. The example

proposed immediately above with a and b independent of t is also given in 16. The

complete model is introduced in 17 and leads to nonlocal first order equations of

the type

uε
t +

(
c(

x

ε
) + M ε(

uε

ε
)

)
|Duε| + H

(
uε

ε
, Duε

)
= 0 (1.2)

where M ε is a nonlocal jump operator and c is a periodic velocity. In the latter

model, the level sets of the solution uε describe dislocations. By taking M ε = 0 in

(1.2), c bounded from below by a positive constant, and H
(

uε

ε , Duε
)

= H
(

uε

ε

)
,

we obtain a model in the class studied in the present paper. We cannot say that

the model studied here is relevant for dislocation dynamics since the nonlocal term

appears very naturally in that context.

Going back to (1.1), it was proved in 16 that, with H independent of t,

• under assumptions (H1) and (H2), there exists a unique bounded continuous

viscosity solution of (1.1);

• under assumptions (H1)-(H3), the limit u0 of uε as ε → 0 exists and it is the

unique bounded continuous solution of the homogenized problem
{

u0
t + H(Du0) = 0, (t, x) ∈ (0, +∞) × R

N ,

u0(0, x) = u0(x), x ∈ R
N ,

(1.3)

where the effective Hamiltonian H is uniquely defined by the long time be-

havior of the solution of
{

λ = vt + H(x,−λt + p · x + v, p + Dv), (t, x) ∈ (0, +∞) × R
N ,

v(0, x) = 0, x ∈ R
N .

(1.4)
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More precisely, we have the following theorem

Theorem 1.1 (Imbert-Monneau, 16). Let H be independent of t. Assume (H1)-

(H3) and u0 ∈ W 1,∞(RN ). Then, as ε → 0, the sequence uε converges locally

uniformly in (0, +∞) × R
N to the solution u0 of (1.3), where, for any p ∈ R

N

H(p) is defined as the unique number λ for which there exists a bounded continuous

viscosity solution of (1.4). Moreover H : R
N → R is continuous and satisfies the

coercivity property

H(p) → +∞ as |p| → +∞.

The proof in 16 is rather involved: it uses a twisted perturbed test function for a

higher dimensional problem posed in R × R
N × R, i.e. a clever modification of the

method proposed by Evans in 13,14.

Under the additional assumption (H4), an easier proof of Theorem 1.1 was given

by Barles, 3, as a byproduct of a general result on the homogenization of Hamilton-

Jacobi equations with non-coercive Hamiltonians.

Remark 1.1. The hypothesis (H4) which was not used in 16 guarantees the exis-

tence of a function H∞ such that

H∞(t, x, u, p) = lim
s→0+

sH(t, x, u, s−1p).

Moreover H∞ satisfies (H1)-(H3).

Typically, the results of 16 apply for Hamiltonians of the form H(t, x, u, p) =

a(t, x)(|p|2 + 1)β/2 + b(t, x, u), with a > 0 and 0 < β ≤ 1, while here we have

to take β = 1.

In 3, thanks to assumption (H4), the equation for uε is interpreted as an equation

for the motion of a graph: indeed, following 3, for t ∈ R, (x, y) ∈ R
N+1, (px, py) ∈

R
N+1, let us introduce the non-coercive Hamiltonian F defined by

F (t, x, y, px, py) =

{
|py|H(t, x, y, |py|

−1px), if py 6= 0,

H∞(t, x, y, px), otherwise.
(1.5)

The function U ε(t, x, y) := uε(t, x) − y satisfies
{

U ε
t + F

(
t
ε ,

x
ε , Uε+y

ε , DxU ε, DyU ε
)

= 0, (t, x, y) ∈ (0, +∞) × R
N+1,

U ε(0, x, y) = u0(x) − y, (x, y) ∈ R
N+1.

(1.6)

In 3 Barles proves that the sequence U ε converges to the solution U 0 of the following

problem
{

U0
t + F (DxU0, DyU0) = 0, (t, x, y) ∈ (0, +∞) × R

N+1,

U0(0, x, y) = u0(x) − y, (x, y) ∈ R
N+1,

(1.7)

where for (px, py) ∈ R
N+1, F (px, py) is the unique number λ for which the cell

problem

Vt + F (t, x, y, px + DxV, py + DyV ) = λ in R × R
N+1. (1.8)
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admits bounded sub and supersolutions. This result makes it possible to solve the

homogenization problem for (1.1):

Theorem 1.2 (Barles, 3). Assume (H1)-(H4). Then the sequence uε converges

locally uniformly in (0, +∞) × R
N to the solution u0 of (1.3). The function H(p)

in (1.3) can be characterized as follows: H(p) = F (p,−1), where, for any (px, py) ∈

R
N+1, F (px, py) is the unique number λ for which the equation (1.8) admits bounded

sub and supersolutions in R × R
N+1.

An important step in the proof of Theorem 1.2 consists of homogenizing the

non-coercive level-set equation satisfied by 11{Uε≥0}.

In this paper, we tackle two questions:

• Is it possible to estimate the rate of convergence of uε to u0 when ε → 0?

• Is is possible to approximate numerically the effective Hamiltonian?

The first question was answered by Capuzzo Dolcetta and Ishii, 7 for a more clas-

sical homogenization problem: the estimate ‖uε − u0‖∞ ≤ Cε
1
3 was obtained for

Hamilton-Jacobi equations of the type

uε + H
(
x,

x

ε
, Duε

)
= 0,

where (x, y, p) → H(x, y, p) is a coercive Hamiltonian, uniformly Lipschitz continu-

ous for |p| bounded and periodic with respect to y; moreover, if H(x, y, p) does not

depend on x, then the convergence is linear in ε. We will show that in the present

case, it is possible to obtain the same rates of convergence as ε → 0 by adapting

the proof in 7 using the arguments contained in 3. Up to our knowledge, these er-

rors estimates are new for evolution problems also in the case the Hamiltonian H

does not depend on uε. Our main result on this topic is Theorem 2.1 in § 2. The

main idea is to approximate U ε (with an error smaller than ε) by a discontinuous

function Ũ ε which takes integer values where U ε has noninteger values and which

is a discontinuous viscosity solution of

Ũ ε
t + F

(
t

ε
,
x

ε
,
y

ε
, DxŨ ε, DyŨ ε

)
= 0, (t, x, y) ∈ (0, +∞) × R

N+1.

The latter equation has to be compared with (1.6). This approximation Ũ ε is ob-

tained as the limit as δ → 0 of φδ(U
ε) where (φδ)δ is a sequence of increasing

functions. The method of Capuzzo Dolcetta and Ishii 7 can then be applied to

Ũ ε. From the estimates of ‖U ε − U0‖∞ we automatically obtain the estimates of

‖uε − u0‖∞.

It is useful to recall that the theory of homogenization for first order Hamilton-

Jacobi equations started with the famous unpublished work of Lions, Papanicolaou

and Varadhan, 18 for the equation

uε
t + H

(x

ε
, Duε

)
= 0, (1.9)
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where (y, p) → H(y, p) is a coercive Hamiltonian, uniformly Lipschitz continuous for

|p| bounded and periodic with respect to y. Note also that the method of Capuzzo

Dolcetta and Ishii 7 has been recently extended to obtain convergence rates for

other periodic homogenization problems, in particular by Camilli and Marchi 5 for

fully nonlinear elliptic equations, and by Camilli, Cesaroni and Marchi 6 for fully

nonlinear elliptic problems with vanishing viscosity.

The second question was studied in 1 for equation (1.9) where (y, p) → H(y, p) is

a coercive Hamiltonian, uniformly Lipschitz continuous for |p| bounded and periodic

with respect to y; in this article, a complete numerical method for solving the

homogenized problem was studied, including as a main step the approximation of

the effective Hamiltonian by solving discrete cell problems. Error estimates were

proved. Up to our knowledge, there are so far few numerical results concerning

the homogenization of the local model proposed in 16 and of the nonlocal model

presented in 17. The only indirectly related work that we are aware of is the work by

Cacace, Chambolle and Monneau 4 on a posteriori error estimates for the effective

Hamiltonian of dislocation dynamics (nonlocal model).

In the present article, we will focus on the case N = 1 for simplicity and we will

study the approximation of the cell problem (1.8) by Eulerian schemes in R × R
2.

Since we will look for a periodic solution (with unit period) in the space variables,

it will be enough to approximate the solution at discrete times tn = n∆t and at the

nodes of a discrete unit torus of R
2.

Remark 1.2. Note that instead of approximating (1.8), it would have been possible

to approximate numerically problem (1.4). Yet, although (1.4) has a lower dimen-

sionality, (indeed (1.4) is posed in R×R
N instead of R×R

N+1), its solutions may

not be periodic (indeed we will see in §4 that (1.4) has periodic solutions only if p

has rational coordinates, in which case the period depends on p and may be large).

This alternative approach is thus feasible if N = 1, but seems difficult to generalize

to say, N = 2. This is the reason why we have preferred to study the approximation

of (1.8).

In § 3, we prove Theorem 3.1, the discrete analogue of the ergodicity Theorems

in 3, i.e. that there exists a unique real number λ∆t
h such that the discrete analogue

of (1.8) has a solution. The arguments in the proof are the discrete counterparts of

those in 3. Then, we prove Proposition 3.2, which states that the discrete effective

Hamiltonian converges to the effective Hamiltonian when the grid step of the dis-

crete cell problem tends to zero.

To summarize, the paper is organized as follows: Section 2 is devoted to finding

estimates on the rate of convergence as ε → 0. Section 3 is devoted to the numerical

approximation of the effective Hamiltonian by Eulerian schemes. Finally, we present

some numerical tests in Section 4.
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2. An estimate on the rate of convergence when ε → 0

This section is devoted to the estimate of the rate of the uniform convergence of

the solutions of (1.1) to the solution of the equation (1.3) in term of ε.

2.1. The main result

Theorem 2.1. Assume (H1)-(H4) and u0 ∈ W 1,∞(RN ). Let uε and u0 be respec-

tively the viscosity solutions of (1.1) and (1.3). Then there exists a constant C,

independent of ε ∈ (0, 1), such that for any T > 0

sup
[0,T ]×RN

|uε(t, x) − u0(t, x)| ≤ CeT ε
1
3 . (2.1)

If u0 is affine then

sup
R+×RN

|uε(t, x) − u0(t, x)| ≤ Cε. (2.2)

2.2. Preliminary results

In this section we recall some results that will be used later to obtain error estimates.

The assumptions (H1)-(H4) on H guarantee that F satisfies

(F1) Periodicity: for any (t, x, y, px, py) ∈ R × R
N+1 × R

N+1

F (t + 1, x + k, y + 1, px, py) = F (t, x, y, px, py) for any k ∈ Z
N ;

(F2) Regularity: F : R×R
N+1×R

N+1 → R is Lipschitz continuous and there exists

a constant C1 > 0 such that, for almost every (t, x, y, px, py) ∈ R × R
N+1 ×

R
N+1

|D(t,x)F (t, x, y, px, py)| ≤ C1(|px| + |py|), |DyF (t, x, y, px, py)| ≤ C1|py|,

|D(px,py)F (t, x, y, px, py)| ≤ C1;

(F3) Coercivity: F (t, x, y, px, py) → +∞ as |px| → +∞ uniformly for (t, x, y) ∈

R × R
N+1, |py| ≤ R, for any R > 0;

Remark that F (t, x, y, 0, 0) = 0. This and (F2) imply that for every (t, x, y, px, py) ∈

R × R
N+1 × R

N+1

|F (t, x, y, px, py)| ≤ C1(|px| + |py|). (2.3)

Moreover, by construction, F satisfies the ”geometrical” assumption

(F4) For any (t, x, y, px, py) ∈ R × R
N+1 × R

N+1 and any λ > 0,

F (t, x, y, λpx, λpy) = λF (t, x, y, px, py).
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Assumption (F4) guarantees that the function F in (1.5) is invariant by any non-

decreasing change U → ϕ(U), see 8 and 15, i.e., any function V = ϕ(U ε), with ϕ

nondecreasing is solution of
{

Vt + F
(

t
ε ,

x
ε , Uε+y

ε , DxV, DyV
)

= 0, (t, x, y) ∈ (0, +∞) × R
N+1,

V (0, x, y) = ϕ(u0(x) − y), (x, y) ∈ R
N+1.

Finally, note that (F3) and (F4) imply the existence of a positive constant C2 such

that

F (t, x, y, px, 0) ≥ C2|px| for all (t, x, y, px) ∈ R × R
N+1 × R

N . (2.4)

In 3, in order to construct sub and supersolutions of (1.8), Barles introduces for

α > 0 the auxiliary equation

W α
t +F (t, x, y, px +DxW α, py +DyW α)+αW α = 0, (t, x, y) ∈ R×R

N+1, (2.5)

with F defined by (1.5), and shows that if (H1)-(H4) hold true, then (2.5) admits

a unique continuous periodic viscosity solution. Moreover the limit of αW α(t, x, y)

as α → 0+ does not depend on (t, x, y) and the half-relaxed limits of W α −min W α

provide a bounded subsolution and a bounded supersolution of (1.8), with λ =

− limα→0+ αW α(t, x, y). We use the notation P = (px, py) ∈ R
N+1 and W α(x, y, P )

for the unique solution of (2.5). We have the following proposition:

Proposition 2.1 (Barles, 3). For any (t, x, y, P ) ∈ R × R
N+1 × R

N+1, P =

(px, py), the following estimates hold

(i)

min
(t,x,y)∈R×RN+1

−F (t, x, y, P ) ≤ αW α(t, x, y, P ) ≤ max
(t,x,y)∈R×RN+1

−F (t, x, y, P );

(ii) There exists a constant K1 > 0 depending on ‖F (t, x, y, px, py)‖∞ and C2 such

that

max
R×RN+1

W α − min
R×RN+1

W α ≤ K1.

Further properties of W α(x, y, P ) are given in the following lemma:

Lemma 2.1. For any (t, x, y, P ) ∈ R×R
N+1 ×R

N+1 the following estimates hold

(i) α|DP W α(t, x, y, P )| ≤ C1, where C1 is introduced in (F2);

(ii) |αW α(t, x, y, P ) + F (P )| ≤ αK1, where K1 is introduced in Proposition 2.1;

(iii) W α(t, x, y, 0) ≡ 0;

(iv) ‖DF‖∞ ≤ C1.

Proof. Let us fix Q ∈ R
N+1. The Lipschitz continuity of F , i.e. (F2), implies that

the function W (t, x, y) = W α(t, x, y, P + Q) satisfies

Wt + F (t, x, y, P + DW ) + αW ≤ C1|Q|
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and then, by comparison

αW (t, x, y) ≤ αW α(t, x, y, P ) + C1|Q|.

A similar argument shows that αW (t, x, y) ≥ αW α(t, x, y, P )−C1|Q|. It then follows

α|W α(t, x, y, P + Q) − W α(t, x, y, P )| ≤ C1|Q|,

which proves (i).

Let us turn out to (ii). We claim that

µ := α max
R×RN+1

W α ≥ −F (P ).

Indeed, W α(t, x, y, P ) is a supersolution of

W α
t + F (t, x, y, P + DW α) = −µ.

Let V be a bounded subsolution of (1.8), then by comparison between W α +µt and

V − F (P )t, we have

V (t, x, y) − W α(t, x, y) ≤ V (0, x, y) − W α(0, x, y) + t(F (P ) + µ).

Since V and W α are bounded, dividing by t > 0 and letting t tend to +∞, we

obtain µ ≥ −F (P ). Then from (ii) of Proposition 2.1, for (t, x, y) ∈ R × R
N+1,

αW α(t, x, y, P ) ≥ α min
R×RN+1

W α ≥ α max
R×RN+1

W α − αK1 ≥ −F (P ) − αK1.

A similar argument shows that

αW α(t, x, y, P ) + F (P ) ≤ αK1;

this concludes the proof of (ii).

Property (iii) follows from F (t, x, y, 0, 0) = 0 and the uniqueness of the periodic

solution of (2.5).

Finally, (iv) is an immediate consequence of

F (P ) − F (Q) ≤ 2αK1 + α‖DP W α‖∞|P − Q|

and of (i).

We conclude this section by recalling some properties of the solutions u0 and

uε.

Proposition 2.2. There exist constants CT , L > 0 such that for any (t, x), (s, y) ∈

[0, T ]× R
N

|uε(t, x)|, |u0(t, x)| ≤ CT , (2.6)

|u0(t, x) − u0(s, y)| ≤ L(|t − s| + |x − y|). (2.7)

Moreover, for any t ∈ [0, T ], the Lipschitz constant of u0(t, ·) is the Lipschitz con-

stant of the initial datum u0.
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Proof. By comparison

|uε(t, x) − u0(x)| ≤ C0t

where C0 = maxx,y,|p|≤|u0|1,∞
|H(x, y, p)|. This implies (2.6) for uε. Similarly can

be showed the same estimate for u0.

The Lipschitz continuity of u0 follows from the comparison principle for (1.3),

see 2, Theorem III.3.7 and Remark III.3.8.

2.3. Proof of the main result

This section is devoted to the proof of Theorem 2.1. We are going to show that for

any T > 0

sup
[0,T ]×RN+1

|U ε(t, x, y) − U0(t, x, y)| ≤ CeT ε
1
3 ,

where C does not depend on T . Since U ε(t, x, y) = uε(t, x) − y and U0(t, x, y) =

u0(t, x) − y, this estimate automatically gives (2.1).

Let us consider a function ζ : R → R with the following properties




ζ ′(s) > 0, for any s ∈ R,

lim
s→+∞

ζ(s) = 1, lim
s→−∞

ζ(s) = 0,

|ζ(s) − χ(s)|, |ζ ′(s)| ≤ K2

1+s2 , for any s ∈ R,

(2.8)

where we have denoted by χ(s) the Heaviside function defined by

χ(s) =

{
1, for s ≥ 0,

0, for s < 0.

For n ∈ N, ε, δ > 0, let us define the function

ϕn,δ
ε (s) :=

n∑

i=−n

εζ

(
s − iε

δ

)
− ε(n + 1).

Then we have:

Lemma 2.2. Assume (2.8). Then for any s ∈ R, the limit limn→+∞ ϕn,δ
ε (s) exists

and the function ϕδ
ε :

ϕδ
ε(s) := lim

n→+∞
ϕn,δ

ε (s)

is of class C1 with (ϕδ
ε)

′(s) > 0 for any s ∈ R. Moreover

lim
δ→0+

ϕδ
ε(s) =

{
(i − 1)ε + ζ(0)ε, if s = iε,

iε, if iε < s < (i + 1)ε.
(2.9)

Proof. To show that the sequence is convergent it suffices to show that for any

s ∈ R ϕn,δ
ε (s) is a Cauchy sequence. Fix s ∈ R and let i0 ∈ Z be the closest integer
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to s, i.e., s = i0ε + γε, with γ ∈
(
− 1

2 , 1
2

]
. Let k > m > |i0|, then, by assumptions

(2.8) we have

ϕk,δ
ε (s) − ϕm,δ

ε (s) =

−m−1∑

i=−k

εζ

(
s − εi

δ

)
+

k∑

i=m+1

εζ

(
s − εi

δ

)
− ε(k − m)

=
−m−1∑

i=−k

ε

[
ζ

(
s − εi

δ

)
− 1

]
+

k∑

i=m+1

εζ

(
s − εi

δ

)

≤ εK2δ
2
−m−1∑

i=−k

1

(s − εi)2
+ εK2δ

2
k∑

i=m+1

1

(s − εi)2

= K2
δ2

ε

−m−1∑

i=−k

1

(i0 − i + γ)2
+ K2

δ2

ε

k∑

i=m+1

1

(i0 − i + γ)2
.

Similarly, it can be showed that

ϕk,δ
ε (s) − ϕm,δ

ε (s) ≥ −K2
δ2

ε

−m−1∑

i=−k

1

(i0 − i + γ)2
− K2

δ2

ε

k∑

i=m+1

1

(i0 − i + γ)2
.

Hence |ϕk,δ
ε (s) − ϕm,δ

ε (s)| → 0 as m, k → +∞. Similar arguments show that the

sequence (ϕδ,n
ε )′ converge uniformly on compact sets of R. This implies that ϕδ

ε is

of class C1 with (ϕδ
ε)

′(s) = limn→+∞(ϕδ,n
ε )′(s).

Now, let us show (2.9). Let s = i0ε + γε for some i0 ∈ Z and γ ∈ [0, 1). Then

ϕn,δ
ε (s) − i0ε

=ε
[
ζ
(γε

δ

)
− 1
]

+

i0−1∑

i=−n

ε

[
ζ

(
i0ε + γε − εi

δ

)
− 1

]
+

n∑

i=i0+1

εζ

(
i0ε + γε − εi

δ

)

≤ε
[
ζ
(γε

δ

)
− 1
]
ε +

δ2

ε
K2

i0−1∑

i=−n

1

(i0 − i + γ)2
+

δ2

ε
K2

n∑

i=i0+1

1

(i − i0 − γ)2

=ε
[
ζ
(γε

δ

)
− 1
]

+
δ2

ε
K2

n+i0∑

i=1

1

(i + γ)2
+

δ2

ε
K2

n−i0∑

i=1

1

(i − γ)2
.

Similarly

ϕn,δ
ε (s) − i0ε ≥ ε

[
ζ
(γε

δ

)
− 1
]
−

δ2

ε
K2

n+i0∑

i=1

1

(i + γ)2
−

δ2

ε
K2

n−i0∑

i=1

1

(i − γ)2
.

Letting n → +∞, we get

∣∣∣ϕδ
ε(s) − i0ε − ε

[
ζ
(γε

δ

)
− 1
]∣∣∣ ≤ δ2

ε
K2

+∞∑

i=1

1

(i + γ)2
+

δ2

ε
K2

+∞∑

i=1

1

(i − γ)2
.

If γ > 0 then ζ
(

γε
δ

)
− 1 → 0 as δ → 0+ and ϕδ

ε(s) → i0ε if δ → 0+. If γ = 0, then

ϕδ
ε(s) → (i0 − 1)ε + ζ(0)ε if δ → 0+ and (2.9) is proved.
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Let us define

Ũ ε,δ(t, x, y) := ϕδ
ε(U

ε(t, x, y)).

Since F satisfies the ”geometrical” assumption (F4), the function Ũ ε,δ is solution

of {
Ũ ε,δ

t + F
(

t
ε ,

x
ε , Uε+y

ε , DxŨ ε,δ, DyŨ ε,δ
)

= 0, (t, x, y) ∈ (0, T ) × R
N+1,

Ũ ε,δ(0, x, y) = ϕδ
ε(u0(x) − y), (x, y) ∈ R

N+1.
(2.10)

By stability of viscosity solutions, see e.g. 10, the limit Ũ ε(t, x, y) of Ũ ε,δ(t, x, y) as

δ → 0+ is a discontinuous viscosity solution of (2.10) with initial datum ϕε(u0(x)−

y), where ϕε(s) = limδ→0+ ϕδ
ε(s). This means that (Ũ ε)∗ = lim sup∗

δ→0+ Ũ ε,δ (resp.

(Ũ ε)∗ = lim inf∗ δ→0+ Ũ ε,δ) is a viscosity subsolution (resp. supersolution) of (2.10),

and (Ũ ε)∗(0, x, y) ≤ (ϕε)
∗(u0(x) − y) (resp. (Ũ ε)∗(0, x, y) ≥ (ϕε)∗(u0(x) − y)).

Moreover, by (2.9)

Ũ ε(t, x, y) =





iε, if iε < U ε(t, x, y) < (i + 1)ε,

(i − 1)ε + ζ(0)ε, if (t, x, y) ∈ Int{U ε = iε}.

At the points (t, x, y) ∈ ∂{U ε = iε}, the value of Ũ ε depends on the lower semi-

continuous or the upper semi-continuous envelope that we consider in the definition

of discontinuous viscosity solution. In particular, since U ε is continuous, Ũ ε has the

following properties

|(Ũ ε)∗(t, x, y)−U ε(t, x, y)|, |(Ũ ε)∗(t, x, y)−U ε(t, x, y)| ≤ ε ∀(t, x, y) ∈ [0, T ]×R
N+1

(2.11)

and

DŨ ε(t, x, y) = 0 if U ε(t, x, y) 6= iε, i ∈ Z. (2.12)

Condition (2.12) implies that Ũ ε is actually a solution of
{

Ũ ε
t + F

(
t
ε ,

x
ε , y

ε , DxŨ ε, DyŨ ε
)

= 0, (t, x, y) ∈ (0, T ) × R
N+1,

Ũ ε(0, x, y) = ϕε(u0(x) − y), (x, y) ∈ R
N+1.

Indeed, when iε < U ε(t, x, y) < (i+1)ε, for some i ∈ Z, the function Ũ ε is constant in

a neighborhood of (t, x, y). Then the result follows from the fact that F (t, x, y, 0) =

0. On the other hand, when U ε(t, x, y) = iε, by periodicity, F
(

t
ε ,

x
ε , Uε+y

ε , P
)

=

F
(

t
ε ,

x
ε , y

ε , P
)
.

In order to estimate |U ε −U0| it is convenient to estimate |Ũ ε −U0|; indeed, Uε

ε

does not any longer appear in the equation satisfied by Ũ ε.

Let us define V ε(t, x, y) = e−tŨ ε(t, x, y) and V 0(t, x, y) = e−tU0(t, x, y). The

functions V ε and V 0 are respectively solutions of

{
V ε

t + V ε + F
(

t
ε ,

x
ε , y

ε , DxV ε, DyV
ε
)

= 0, (t, x, y) ∈ (0, T ) × R
N+1,

V ε(0, x, y) = ϕε(u0(x) − y), (x, y) ∈ R
N+1,

(2.13)
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and

{
V 0

t + V 0 + F (DxV 0, DyV 0) = 0, (t, x, y) ∈ (0, T ) × R
N+1,

V 0(0, x, y) = u0(x) − y, (x, y) ∈ R
N+1.

(2.14)

For alleviating the notations, let us denote a vector of R
N+1 by X = (x, xN+1),

where x ∈ R
N and xN+1 ∈ R. We first estimate from above the difference (V ε)∗−V 0:

for this, let us introduce the auxiliary function

Φ(t, X, s, Y ) = (V ε)∗(t, X) − V 0(s, Y ) − εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)

−
|X − Y |2

2εβ
−

|t − s|2

2σ
−

r

2
|X |2 −

η

T − t
,

(2.15)

where α = εθ, θ, β, σ, r, η ∈ (0, 1) will be fix later on and β and θ satisfy

0 < θ < 1 − β. (2.16)

In view of (2.6), (2.11), (i) of Proposition 2.1 and (2.3),

Φ(t, X, s, Y ) ≤ 2CT + ε + |xN+1 − yN+1| +
ε

α
C1

|X − Y |

εβ
−

|X − Y |2

2εβ
−

r

2
|X |2

for all (t, X), (s, Y ) ∈ [0, T ] × R
N+1. Hence, Φ attains a global maximum at some

point (t, X, s, Y ) ∈ ([0, T ]× R
N+1)2. Standard arguments show that t, s < T for σ

small enough.

Claim 1: There exists a constant M1 > 0 independent of ε such that |t−s|
σ ≤

M1(1 + |yN+1|).

The inequality Φ(t, X, t, Y ) ≤ Φ(t, X, s, Y ) and Proposition (2.2) imply

|t − s|2

2σ
≤ V 0(t, Y ) − V 0(s, Y ) ≤ |e−t − e−s||U0(t, Y )| + e−s|U0(t, Y ) − U0(s, Y )|

≤ |t − s|(CT + |yN+1|) + L|t − s|

from which Claim 1 follows.

Claim 2: There exists a constant M2 > 0 independent of ε and T , such that
|X−Y |

εβ ≤ M2.

The inequality Φ(t, X, s, X) ≤ Φ(t, X, s, Y ) implies

|X − Y |2

εβ
≤ V 0(s, X) − V 0(s, Y ) + εW α

(
t

ε
,
X

ε
, 0

)
− εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
.

Using (2.7), (i) of Lemma 2.1 and (2.16) we then infer

|X − Y |2

εβ
≤ (L + 1)|X − Y | +

ε

α
C1

|X − Y |

εβ
= (L + 1)|X − Y | + ε1−θ−βC1|X − Y |

≤ M2|X − Y |.
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This concludes the proof of Claim 2.

Claim 3: There exists a constant M3 > 0 independent of ε such that r|X |2 ≤

M3.

The inequality Φ(t, 0, s, 0) ≤ Φ(t, X, s, Y ) implies

r

2
|X|2 ≤(V ε)∗(t, X) − V 0(s, Y ) + V 0(s, 0) − (V ε)∗(t, 0)

+ εW α

(
t

ε
, 0, 0

)
− εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
.

Then, using (2.6), (2.11), Claims 1 and 2, (iii) of Lemma 2.1, (i) of Proposition 2.1

and (2.3), we deduce

r

2
|X |2 ≤ e−t[U ε(t, X) − U0(s, Y )] + |e−t − e−s||U0(s, Y )| + ε

+ V 0(s, 0) − (V ε)∗(t, 0) − εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)

≤ 4CT + M2ε
β + |t − s|(CT + |yN+1|) + 2ε +

ε

α
C1

|X − Y |

εβ

≤ C + 2σM1|yN+1|
2 ≤ C + 2σM1|X |2,

and Claim 3 follows by choosing σ < r
8M1

.

Now, suppose first that t = 0, then

(V ε)∗(t, X) − V 0(t, X) − εW α

(
t

ε
,
X

ε
, 0

)
−

η

T − t
−

r

2
|X |2

≤ (ϕε)
∗(u0(x) − xN+1) − V 0(s, Y ) − εW α

(
0,

X

ε
,
X − Y

εβ

)

for any (t, X) ∈ [0, T ] × R
N+1, from which, using (i) of Proposition 2.1, (iii) of

Lemma 2.1, (2.3) and Claim 2, we deduce

(V ε)∗(t, X) − V 0(t, X) ≤ (ϕε)
∗(u0(x) − xN+1) − V 0(s, Y ) +

η

T − t
+

r

2
|X |2 + ε1−θC1M2.

Letting σ, η and r go to 0+ and using (2.11) and Claim 2 we obtain

(V ε)∗(t, X) − V 0(t, X)

≤(ϕε)
∗(u0(x) − xN+1) − (u0(y) − yN+1) + Cε1−θ

≤(ϕε)
∗(u0(x) − xN+1) − (u0(x) − xN+1) + (L + 1)|X − Y | + Cε1−θ

≤C(εβ + ε1−θ) + ε,

which implies

U ε(t, X) − U0(t, X) ≤ Cet(εβ + ε1−θ). (2.17)

The same estimate can be showed if s = 0.

Next, let us consider the case t, s > 0.
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Claim 4: There exists a constant C > 0 independent of ε and T such that

t − s

σ
+

η

(T − t)2
+ (V ε)∗(t, X) + F

(
X − Y

εβ

)
≤ C(ε1−θ−β + εθ).

The function

(t, X) → (V ε)∗(t, X) − εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
−

|X − Y |2

2εβ
−

r

2
|X |2 −

|t − s|2

2σ
−

η

T − t

(2.18)

has a maximum at (t, X). By adding to Φ a smooth function vanishing with its first

derivative at (t, X), we may assume the maximum is strict.

Next, for j > 0, let us introduce the function

Ψj(t, s, X, Y, Z) : = (V ε)∗(t, X) − εW α

(
s, Y,

Z − Y

εβ

)
−

|X − Y |2

2εβ
−

r

2
|X |2 −

|t − s|2

2σ

−
η

T − t
−

j

2
(|t − εs|2 + |X − Z|2 + |X − εY |2).

Let Pj = (tj , sj , Xj , Yj , Zj) be a maximum point of Ψj on the set

A := B(t, 1) × B

(
t

ε
, 1

)
× B(X, 1) × B

(
X

ε
, 1

)
× B(X, 1).

Since (t, X) is a strict maximum point of (2.18), tj → t, sj → t
ε , Xj , Zj → X

and Yj → X
ε as j → +∞. Then, for j large enough, Pj lies in the interior of A.

Moreover, standard arguments show that

j|tj − εsj |
2, j|Xj − Zj |

2, j|Xj − εYj |
2 → 0 as j → +∞. (2.19)

Remark that this implies in addition that

2j|tj − εsj ||Xj − εYj | ≤ j|tj − εsj |
2 + j|Xj − εYj |

2 → 0 as j → +∞. (2.20)

Since (V ε)∗ and W α are respectively viscosity subsolutions of (2.13) and superso-

lution of (2.5), we obtain

tj − s

σ
+

η

(T − tj)2
+ j(tj − εsj) + (V ε)∗(tj , Xj)

+ F

(
tj
ε

,
Xj

ε
,
Xj − Y

εβ
+ rXj + j(Xj − Zj) + j(Xj − εYj)

)
≤ 0

(2.21)

and

j(tj − εsj) + αW α

(
sj , Yj ,

Zj − Y

εβ

)
+ F

(
sj , Yj ,

Zj − Y

εβ
+ j(Xj − εYj)

)
≥ 0.

(2.22)
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Subtracting (2.21) and (2.22) and using the Lipschitz continuity of F , assumption

(F2), we get

tj − s

σ
+

η

(T − tj)2
+ (V ε)∗(tj , Xj) − αW α

(
sj , Yj ,

Zj − Y

εβ

)

≤
C1

ε
(|tj − εsj | + |Xj − εYj |)

(
|Zj − Y |

εβ
+ j|Xj − εYj |

)

+ C1

(
|Xj − Zj |

εβ
+ r|Xj | + j|Xj − Zj |

)
.

(2.23)

Let us estimate j|Xj − Zj |. From the inequality Ψj(tj , sj , Xj , Yj , Xj) ≤

Ψj(tj , sj , Xj , Yj , Zj) we deduce that

j

2
|Xj − Zj |

2 ≤ εW α

(
sj , Yj ,

Xj − Y

εβ

)
− εW α

(
sj , Yj ,

Zj − Y

εβ

)
,

and using (i) of Lemma 2.1 we get

j

2
|Xj − Zj |

2 ≤ C1
ε

α

|Xj − Zj |

εβ
= C1ε

1−θ−β|Xj − Zj |.

Then

j|Xj − Zj | ≤ 2C1ε
1−θ−β. (2.24)

Then, passing to the limsup as j → +∞ in (2.23) and taking into account Claim 2,

(2.19) and (2.20), we obtain

t − s

σ
+

η

(T − t)2
+(V ε)∗(t, X)−αW α

(
t

ε
,
X

ε
,
X − Y

ε

)
≤ C(ε1−θ−β +r|X|). (2.25)

By Claim 3, r|X | ≤ r
1
2 M

1
2
3 , hence choosing r > 0 such that r

1
2 M

1
2
3 ≤ ε1−θ−β, we

have r|X | ≤ ε1−θ−β.

Finally, Claim 4 easily follows from (2.25), Claim 2 and the following inequality

−αW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
≥ F

(
X − Y

εβ

)
− αK1 ≥ F

(
X − Y

εβ

)
− K1ε

θ

which comes from (ii) of Lemma 2.1 .

Claim 5: There exists a constant C > 0 independent of ε and T such that

t − s

σ
+ V 0(s, Y ) + F

(
X − Y

εβ

)
≥ −Cε1−θ−β.

The function

(s, Y ) → φ(s, Y ) := V 0(s, Y ) + εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
+

|X − Y |2

2εβ
+

|t − s|2

2σ
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has a minimum at (s, Y ), consequently (0, 0) ∈ D−φ(s, Y ). If we set

Ṽ (s, Y ) := V 0(s, Y ) +
|X − Y |2

2εβ
+

|t − s|2

2σ
, W̃ (Y ) := εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
,

by properties of semijets of Lipschitz functions, see e.g. Lemma 2.4 in 7, there exists

Q ∈ R
N+1 such that

(0, Q) ∈ D−Ṽ (s, Y ) = D−V 0(s, Y ) −

(
t − s

σ
,
X − Y

εβ

)
− Q ∈ D−W̃ (Y ).

Since V 0 is a supersolution of (2.14), we have

t − s

σ
+ V 0(s, Y ) + F

(
X − Y

εβ
+ Q

)
≥ 0. (2.26)

By (i) of Lemma 2.1,
∣∣∣∣εW

α

(
t

ε
,
X

ε
,
X − Y

εβ

)
− εW α

(
t

ε
,
X

ε
,
X − Z

εβ

)∣∣∣∣ ≤
ε

α
C1

|Y − Z|

εβ
= C1ε

1−θ−β|Y −Z|,

from which we get the following estimate of Q:

|Q| ≤ C1ε
1−θ−β. (2.27)

Then, Claim 5 follows from (2.26) using estimate (2.27) and the Lipschitz continuity

of F assured by (iv) of Lemma 2.1.

Claims 4 and 5 imply

(V ε)∗(t, X) − V 0(s, Y ) ≤ C(ε1−θ−β + εθ),

for some constant C independent of ε and T . Since (t, X, s, Y ) is a maximum point

of Φ, we have

(V ε)∗(t, X) − V 0(t, X) ≤ Φ(t, X, s, Y ) + εW α

(
t

ε
,
X

ε
, 0

)
+

r

2
|X |2 +

η

T − t
,

for all (t, X) ∈ [0, T ]× R
N+1. Then, by (iii) of Lemma 2.1

(V ε)∗(t, X) − V 0(t, X)

≤ (V ε)∗(t, X) − V 0(s, Y ) − εW α

(
t

ε
,
X

ε
,
X − Y

εβ

)
+

r

2
|X |2 +

η

T − t

≤ C(ε1−θ−β + εθ) +
ε

α
C1

|X − Y |

εβ
+

r

2
|X |2 +

η

T − t

≤ C(ε1−θ−β + εθ) +
r

2
|X |2 +

η

T − t
,

for some positive constant C. Hence, sending r, η,→ 0+ and taking into account

(2.11), we get

U ε(t, X) − U0(t, X) ≤ Cet(ε1−θ−β + εθ).
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Then, from the previous estimate and (2.17), we can conclude that for all β, θ ∈

(0, 1) satisfying (2.16) we have

U ε(t, X) − U0(t, X) ≤ Cet(ε1−θ−β + εθ + εβ),

for all (t, X) ∈ [0, T ] × R
N+1. The optimal choice of the parameters is θ = β = 1

3 ,

which gives

sup
[0,T ]×RN+1

(U ε(t, X) − U0(t, X)) ≤ Cε
1
3 .

The opposite inequality follows by similar arguments, replacing (V ε)∗ with V 0 and

V 0 with (V ε)∗ in (2.15), and the proof of Theorem 2.1 in the general case is complete.

Now, let us consider the case when u0 is affine. Let us suppose that u0(x) =

p · x + c0 for some p ∈ R
N and c0 ∈ R. In this case, the solution of (1.3) is

u0(t, x) = p · x + c0 − H(p)t. Let V be a bounded viscosity supersolution of (1.8)

with px = p and py = −1. Let us define

V ε(t, X) = U0(t, X) + εV

(
t

ε
,
X

ε

)
.

Since u0(x)−y ≥ ϕε(u0(x)−y)− ε then V ε(0, X) ≥ ϕε(u0(x)−y)− (M +1)ε where

M = ‖V ‖∞. Hence, it is easy to check that V ε is a supersolution of
{

V ε
t + F

(
t
ε ,

X
ε , DXV ε

)
= 0, (t, X) ∈ (0, T )× R

N+1,

V ε(0, X) = ϕε(u0(x) − y) − (M + 1)ε, (x, y) ∈ R
N+1.

By comparison we get V ε(t, X) ≥ (Ũ ε)∗(t, X) − (M + 1)ε and this implies that

U0(t, X)−U ε(t, X) ≥ −Cε. A similar argument shows that U 0(t, X)−U ε(t, X) ≤ Cε

and this concludes the proof of the theorem.

3. Approximation of the effective Hamiltonian by Eulerian

schemes

In this section we give an approximation of the effective Hamiltonian F (P ). To this

end, we introduce an approximation scheme for the equation (2.5) and for simplicity

we only discuss the case N = 1. Given NX and Nt positive integers, we introduce

∆t = 1/Nt, h = 1/NX and

R
2
h := {Xi,j = (xi, yj) |xi = ih, yj = jh, i, j ∈ Z},

R∆t := {tn = n∆t |n ∈ Z}.

An anisotropic mesh with steps h1 and h2 is possible too; we take h1 = h2 only

for simplicity. We denote by W n,P,α
i,j our numerical approximation of W P,α at

(tn, xi, yj) ∈ R∆t × R
2
h. For (2.5) we consider the implicit Eulerian scheme of the

form

W n+1,P,α
i,j − W n,P,α

i,j

∆t
+ αW n+1,P,α

i,j + S(tn, xi, yj , h, [W n+1,P,α]i,j) = 0, (3.1)
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where

S(tn, xi, yj , h, [W ]i,j)

= g(tn, xi, yj , (∆
+
1 W )i,j + px, (∆+

1 W )i−1,j + px, (∆+
2 W )i,j + py, (∆+

2 W )i,j−1 + py)

(3.2)

and

(∆+
1 W )i,j =

Wi+1,j − Wi,j

h
, (∆+

2 W )i,j =
Wi,j+1 − Wi,j

h
.

We make the following assumptions on g:

(g1) Monotonicity: g is nonincreasing with respect to its fourth and sixth argu-

ments, and nondecreasing with respect to its fifth and seventh arguments;

(g2) Consistency: for any t ∈ R, (x, y) ∈ R
2 and (qx, qy) ∈ R

2

g(t, x, y, qx, qx, qy, qy) = F (t, x, y, qx, qy).

(g3) Periodicity: for any t ∈ R, (x, y) ∈ R
2 and Q ∈ R

4

g(t + 1, x + 1, y + 1, Q) = g(t, x, y, Q);

(g4) Regularity: g is locally Lipschitz continuous and there exists C̃1 > 0 such that

for any t ∈ R, (x, y) ∈ R
2 and Q ∈ R

4

|DQg(t, x, y, Q)| ≤ C̃1;

(g5) Coercivity: there exist C̃2, C̃3 > 0 such that for any t ∈ R, (x, y) ∈ R
2,

(q1, q2) ∈ R
2

g(t, x, y, q1, q2, 0, 0) ≥ C̃2(|q
−
1 |2 + |q+

2 |2)
1
2 − C̃3;

(g6) For any t ∈ R, (x, y1), (x, y2) ∈ R
2, q1, q2 ∈ R

g(t, x, y1, q1, q2, 0, 0) = g(t, x, y2, q1, q2, 0, 0).

The points (g1)-(g4) are standard assumptions in the study of numerical schemes

for Hamilton-Jacobi equations. The coercivity hypothesis (g5) can be substituted

by the weaker condition

lim
q+
1 +q−

2 →+∞
g(x, y, q1, q2, q3, q4) = +∞

if g (and hence F ) does not depend on time. If g is homogeneous of degree 1 w.r.t.

Q, then the two coercivity conditions are equivalent.

As an example, we suppose that the Hamiltonian F is of the form

F (t, x, y, px, py) = a(t, x)|px| + b(t, x, y)|py|, with a and b Lipschitz continuous and

periodic functions and a(t, x) ≥ C̃2 > 0; we consider a generalization of the Go-

dunov scheme proposed in 21:

g(t, x, y, q1, q2, q3, q4)

= a(t, x)[(q−1 )2 + (q+
2 )2]

1
2 + b+(t, x, y)[(q−3 )2 + (q+

4 )2]
1
2 − b−(t, x, y)[(q+

3 )2 + (q−4 )2]
1
2 .
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where q+ = max(q, 0) and q− = (−q)+. Then hypothesis (g1)-(g6) are satisfied.

The following theorem is the discrete version of the analogous result in 3 for the

exact solution W P,α of (2.5).

Theorem 3.1. Assume (g1)-(g6). Then we have

(i) For any P = (px, py) ∈ R
2, α, h, ∆t > 0 there exists a unique (W n,P,α

i,j )

periodic solution of (3.1);

(ii) There exists a constant K̃1 depending on ‖F (·, ·, ·, P )‖∞, C̃1 in (g4), C̃2, C̃3

in (g5), px and py, but independent of α, h and ∆t such that

max
i,j,n

W n,P,α
i,j − min

i,j,n
W n,P,α

i,j ≤ K̃1;

(iii) There exists a constant F
∆t

h (P ) such that

lim
α→0+

αW n,P,α
i,j = −F

∆t

h (P ) ∀i, j, n; (3.3)

(iv) F
∆t

h (P ) is the unique number λ
∆t

h ∈ R such that the equation

W n+1,P
i,j − W n,P

i,j

∆t
+ S(tn, xi, yj , h, [W n+1,P ]i,j) = λ

∆t

h (3.4)

admits a bounded solution.

Proof. A proof of the existence of a unique solution of (3.1) in the uniform grid

on the torus with step h is given in 9.

Let us prove (ii). First, remark that by comparison with constants we have

max
i,j,n

|αW n,P,α
i,j | ≤ C0, (3.5)

where C0 := ‖F (·, ·, ·, P )‖∞. Next, let us define

W
n

i := max
j

W n,P,α
i,j .

We claim that W
n

i satisfies

W
n+1

i − W
n

i

∆t
+ αW

n+1

i + S(tn, xi, h, [W
n+1

]i) ≤ 0,

where

S(tn, xi, h, [W ]i) := min
j

g(tn, xi, yj , (∆
+
1 W )i + px, (∆+

1 W )i−1 + px, py, py).

Indeed, for any i and n, denote by j(i,n) the index j such that W
n

i = maxj W n,P,α
i,j =

W n,P,α

i,j(i,n)

, then

W n+1,P,α

i,j(i,n+1)

− W n,P,α

i,j(i,n+1)

∆t
≥

W n+1,P,α

i,j(i,n+1)

− W n,P,α

i,j(i,n)

∆t
=

W
n+1

i − W
n

i

∆t
,
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(∆+
1 W n+1,P,α)i,j(i,n+1)

=
W n+1,P,α

i+1,j(i,n+1)

− W n+1,P,α

i,j(i,n+1)

h

≤
W n+1,P,α

i+1,ji+1,n+1

− W n+1,P,α

i,j(i,n+1)

h
= (∆+

1 W
n+1

)i,

(∆+
1 W n+1,P,α)i−1,j(i,n+1)

=
W n+1,P,α

i,j(i,n+1)

− W n+1,P,α

i−1,j(i,n+1)

h

≥
W n+1,P,α

i,j(i,n+1)

− W n+1,P,α

i−1,j(i−1,n+1)

h
= (∆+

1 W
n+1

)i−1,

and

(∆+
2 W n+1,P,α)i,j(i,n+1)

=
W n+1,P,α

i,j(i,n+1)+1
− W n+1,P,α

i,j(i,n+1)

h
≤ 0,

(∆+
2 W n+1,P,α)i,j(i,n+1)−1 =

W n+1,P,α

i,j(i,n+1)

− W n+1,P,α

i,j(i,n+1)−1

h
≥ 0.

Since (W n,P,α
i,j ) satisfies (3.1), using the monotonicity assumption (g1), we get

W
n+1

i − W
n

i

∆t
+ αW

n+1

i + S(tn, xi, h, [W
n+1

]i)

≤
W

n+1

i − W
n

i

∆t
+ αW n+1,P,α

i,j(i,n+1)

+ g(tn, xi, yj(i,n+1)
, (∆+

1 W
n+1

)i + px, (∆+
1 W

n+1
)i−1 + px, py, py)

≤
W n+1,P,α

i,j(i,n+1)

− W n,P,α

i,j(i,n+1)

∆t
+ αW n+1,P,α

i,j(i,n+1)

+ g(tn, xi, yj(i,n+1)
, (∆+

1 W n+1,P,α)i,j(i,n+1)
+ px, (∆+

1 W n+1,P,α)i−1,j(i,n+1)
+ px,

(∆+
2 W n+1,P,α)i,j(i,n+1)

+ py, (∆+
2 W n+1,P,α)i,j(i,n+1)−1 + py)

≤ 0,

as desired. Then, by (g4), (g5) and (3.5), we see that W
n

i satisfies

W
n+1

i − W
n

i

∆t
+ C̃2

(
|[(∆+

1 W
n+1

)i + px]−|2 + |[(∆+
1 W

n+1
)i−1 + px]+|2

) 1
2

− ≤ 0,

where K1 = C0 + C̃3 + 2C̃1|py|. In particular we infer that

W
n+1

i − W
n

i ≤ K1∆t,

which implies that if n ≥ m then

W
n

i − W
m

i ≤ K1(n − m)∆t = K1(tn − tm). (3.6)
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Next, let us consider

W i = max
n

W
n

i .

Similar arguments as before show that W i satisfies

C̃2

(
|[(∆+

1 W )i + px]−|2 + |[(∆+
1 W )i−1 + px]+|2

) 1
2

≤ K1,

which implies the existence of a constant K2 > 0 depending on C0, C̃1, C̃2, C̃3, px

and py such that

max
i

|(∆+
1 W )i| ≤ K2. (3.7)

Now, let (i1, n1) and (i2, n2) be such that maxi,n W
n

i = W
n1

i1 and mini,n W
n

i =

W
n2

i2 , and let ni2 be such that W i2 = maxn W
n

i2 = W
ni2

i2 . By periodicity, we may

take |xi1 − xi2 | ≤ 1 and 0 ≤ tni2
− tn2 ≤ 1. Then using (3.7) and (3.6), we get

W
n1

i1 = W i1

≤ W i2 + K2|xi1 − xi2 |

≤ W
ni2

i2 + K2

≤ W
n2

i2 + K1(tni2
− tn2) + K2

≤ W
n2

i2 + K0.

Then we have proved that

max
i,n

W
n

i − min
i,n

W
n

i ≤ K0, (3.8)

where K0 depends only on C0, C̃1, C̃2, C̃3, px and py.

Next, we consider the behavior of W n,P,α
i,j in j. We claim that

W n,P,α
i,j1

+ pyyj1 ≤ W n,P,α
i,j2

+ pyyj2 if j1 ≥ j2 and py < 0,

W n,P,α
i,j1

= W n,P,α
i,j2

for any j1, j2 if py = 0, (3.9)

W n,P,α
i,j1

+ pyyj1 ≥ W n,P,α
i,j2

+ pyyj2 if j1 ≥ j2 and py > 0.

Let us consider the case py < 0. Suppose by contradiction that

M := max
i,n,j1≥j2

(W n,P,α
i,j1

−W n,P,α
i,j2

+py(yj1−yj2)) = W n,P,α

i,j1

−W n,P,α

i,j2

+py(yj1
−yj2

) > 0.

Then j1 ≥ j2 + 1. We have the following estimate

(∆+
1 W n,P,α)i,j1

− (∆+
1 W n,P,α)i,j2

=
W n,P,α

i+1,j1

− W n,P,α

i,j1

h
−

W n,P,α

i+1,j2

− W n,P,α

i,j2

h

=
W n,P,α

i+1,j1

− W n,P,α

i+1,j2

h
−

W n,P,α

i,j1

− W n,P,α

i,j2

h
≤ 0.
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Similarly

(∆+
1 W n,P,α)i−1,j1

≥ (∆+
1 W n,P,α)i−1,j2

,

and

W n,P,α

i,j1

− W n−1,P,α

i,j1

∆t
≥

W n,P,α

i,j2

− W n−1,P,α

i,j2

∆t
.

Moreover, we have

(∆+
2 W n,P,α)i,j1

+ py =
W n,P,α

i,j1+1
− W nP,α

i,j1

h
+ py

=
W n,P,α

i,j1+1
− W n,P,α

i,j2

h
+ py

yj1+1 − yj2

h
−

W n,P,α

i,j1

− W n,P,α

i,j2

h
− py

yj1
− yj2

h
≤ 0,

similarly

(∆+
2 W n,P,α)i,j1−1 + py ≥ 0, (∆+

2 W n,P,α)i,j2
+ py ≥ 0, (∆+

2 W n,P,α)i,j2−1 + py ≤ 0.

Then, since W n,P,α
i,j satisfies (3.1), using assumptions (g1) and (g6), we get

α(W n,P,α

i,j1

− W n,P,α

i,j2

)

≤− g(tn, xi, yj1
, (∆+

1 W n,P,α)i,j1
+ px, (∆+

1 W n,P,α)i−1,j1
+ px, 0, 0)

+ g(tn, xi, yj2
, (∆+

1 W n,P,α)i,j1
+ px, (∆+

1 W n,P,α)i−1,j1
+ px, 0, 0) = 0.

This implies that

0 < αM = α(W n,P,α

i,j1

− W n,P,α

i,j2

+ py(yj1
− yj2

)) ≤ αpy(yj1
− yj2

) < 0,

which is a contradiction and this concludes the proof of (3.9) for py < 0. The case

py ≥ 0 can be treated in an analogous way.

Now, to prove (ii), we use the properties (3.8) and (3.9) of W n,P,α
i,j and again we

only consider the case py < 0. Let (i1, j1, n1) and (i2, j2, n2) be such that W n1,P,α
i1,j1

=

maxi,j,n W n,P,α
i,j and W n2,P,α

i2,j2
= mini,j,n W n,P,α

i,j . Let j be such that W
n2

i2 = W n2,P,α

i2,j
.

By periodicity, we can take 0 ≤ yj − yj2 ≤ 1 and |xi1 − xi2 | ≤ 1. Then

W n1,P,α
i1 ,j1

= W
n1

i1

≤ W
n2

i2 + K0

= W n2,P,α

i2 ,j
+ K0

≤ W n2,P,α
i2 ,j2

+ py(yj2 − yj) + K0

≤ W n2,P,α
i2 ,j2

− py + K0,

and this concludes the proof of (ii).
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The property (iii) easily follows from (ii) and (3.5). Indeed, from (3.5), up to

subsequence, α mini,j,n W n,P,α
i,j converges to a constant −F

∆t

h (P ) as α → 0+. Then

from (ii), for any i, j, n, we get

|αW n,P,α
i,j + F

∆t

h (P )| ≤ |α min
i,j,n

W n,P,α
i,j + F

∆t

h (P )| + α|W n,P,α
i,j − min

i,j,n
W n,P,α

i,j |

≤ |α min
i,j,n

W n,P,α
i,j + F

∆t

h | + αK̃1 → 0 as α → 0+,

and (iii) is proved.

Let us turn to (iv). Let us define Zn,P,α
i,j = W n,P,α

i,j −mini,j,n W n,P,α
i,j . By (ii), up

to subsequence, (Zn,P,α
i,j ) converges to a grid function (Zn,P

i,j ) as α → 0+. The grid

function (Zn,P,α
i,j ) satisfies

Zn+1,P,α
i,j − Zn,P,α

i,j

∆t
+ αZn+1,P,α

i,j + S(tn, xi, yj , h, [Zn+1,P,α]i,j) = −α min
i,j,n

W n,P,α
i,j .

Letting α → 0+, since by (ii) (Zn,P,α
i,j ) is bounded and α mini,j,n W n,P,α

i,j → −F
∆t

h ,

we see that (Zn,P
i,j ) is a solution of (3.4) with λ

∆t

h = F
∆t

h .

To prove the uniqueness of a solution (λ
∆t

h , (W n,P
i,j )) of (3.4), we show that if

there exists a subsolution (Un,P
i,j ) of (3.4) with λ

∆t

h = λ1 and a supersolution (V n,P
i,j )

of (3.4) with λ
∆t

h = λ2, then λ2 ≤ λ1.

Let M = maxi,j,n(Un,P
i,j − V n,P

i,j ) = Un0,P
i0,j0

− V n0,P
i0,j0

. Then

Un0,P
i0,j0

− Un0−1,P
i0,j0

∆t
≥

V n0,P
i0 ,j0

− V n0−1,P
i0,j0

∆t
,

(∆+
1 Un0,P )i0,j0 ≤ (∆+

1 V n0,P )i0,j0 , (∆+
1 Un0,P )i0−1,j0 ≥ (∆+

1 V n0,P )i0−1,j0 ,

(∆+
2 Un0,P )i0,j0 ≤ (∆+

2 V n0,P )i0,j0 , (∆+
2 Un0,P )i0,j0−1 ≥ (∆+

2 V n0,P )i0 ,j0−1.

From the monotonicity of g,

λ1 ≥
Un0,P

i0,j0
− Un0−1,P

i0,j0

∆t
+ g

(
tn0 , xi0 , yj0 , (∆

+
1 Un0,P )i0,j0 + px, (∆+

1 Un0,P )i0−1,j0 + px,

(∆+
2 Un0,P )i0 ,j0 + py, (∆

+
2 Un0,P )i0,j0−1 + py

)

≥
V n0,P

i0 ,j0
− V n0−1,P

i0 ,j0

∆t
+ g

(
tn0 , xi0 , yj0 , (∆

+
1 V n0,P )i0,j0 + px, (∆+

1 V n0,P )i0−1,j0 + px,

(∆+
2 V n0,P )i0,j0 + py, (∆+

2 V n0,P )i0 ,j0−1 + py

)

≥ λ2.

This concludes the proof of (iv).

We need a more precise estimate on the rate of convergence of αW n,α,P
i,j to

F
∆t

h (P ):
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Proposition 3.1. Assume (g1)-(g6). Then for any i, j, n

|αW n,α,P
i,j + F

∆t

h (P )| ≤ K̃1α,

where K̃1 = K̃1(P ) is the constant in (ii) of Theorem 3.1.

Proof. As in the proof of (ii) of Lemma 2.1, the result follows from the comparison

principle for (3.1) and (ii) of Theorem 3.1.

Now, we are ready to show that the function F
∆t

h is actually an approximation

of the effective Hamiltonian F .

Proposition 3.2. Assume (g1)-(g6). Let F
∆t

h be defined by (3.3) and let F be the

effective Hamiltonian. Then, for any P ∈ R
2

lim
(∆t,h)→(0,0)

F
∆t

h (P ) = F (P )

uniformly on compact sets of R
2.

Proof. To show the result we estimate W P,α(tn, xi, yj) − W n,P,α
i,j . To this end,

following the same proof as in 11 and 1, we assume that

sup
i,j,n

|αW P,α(tn, xi, yj) − αW n,P,α
i,j | = sup

i,j,n
(αW P,α(tn, xi, yj) − αW n,P,α

i,j ) = m ≥ 0.

The case when supi,j,n |αW P,α(tn, xi, yj) − αW n,P,α
i,j | = supi,j,n(αW n,P,α

i,j −

αW P,α(tn, xi, yj)) is handled in a similar manner.

For simplicity of notations we omit the index P . Let us denote W α
h,∆t(tn, Xi,j) :=

W n,α
i,j , (tn, Xi,j) ∈ R∆t × R

2
h. For (X, Y ) ∈ R

2 × R
2
h and (t, s) ∈ R × R∆t, consider

the function

Ψ(t, X, s, Y ) = αW α(t, X) − αW α
h,∆t(s, Y ) +

(
5C0 +

m

2

)
βε(t − s, X − Y ),

where, as before, C0 = ‖F (·, ·, ·, P )‖∞ and βε = β
(

t
ε ,

X
ε

)
with β a non-negative

smooth function such that




β(t, X) = 1 − |X |
2
− |t|

2
, if |X |

2
+ |t|

2
≤ 1

2 ,

β ≤ 1
2 , if 1

2 ≤ |X |
2
+ |t|

2
≤ 1,

β = 0, if |X |
2

+ |t|
2

> 1.

We have the following lemma:

Lemma 3.1. The function Ψ attains its maximum at a point (t0, X0, s0, Y0) such

that

(i) Ψ(t0, X0, s0, Y0) ≥ 5C0 + 3
2m;

(ii) βε(t0 − s0, X0 − Y0) ≥
3
5 .

For the proof, see Lemma 4.1 in 11.
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Lemma 3.1 (ii) implies that

βε(t0 − s0, X0 − Y0) = 1 −

∣∣∣∣
X0 − Y0

ε

∣∣∣∣
2

−

∣∣∣∣
t0 − s0

ε

∣∣∣∣
2

.

Then, from the inequality Ψ(s0, Y0, s0, Y0) ≤ Ψ(t0, X0, s0, Y0) we deduce that

(
5C0 +

m

2

)(∣∣∣∣
X0 − Y0

ε

∣∣∣∣
2

+

∣∣∣∣
t0 − s0

ε

∣∣∣∣
2
)

≤ αW α(t0, X0) − αW α(s0, Y0) ≤ 2C0.

(3.10)

This implies that |t0 − s0| → 0 and |X0 − Y0| → 0 as ε → 0. Moreover, since W α

and W α
h,∆t are periodic, we can assume that (t0, X0, s0, Y0) lies in a compact set of

(R × R
2)2. Hence, from (3.10) and the continuity of W α we get that

∣∣∣∣
X0 − Y0

ε

∣∣∣∣
2

+

∣∣∣∣
t0 − s0

ε

∣∣∣∣
2

→ 0 as ε → 0. (3.11)

Since (t0, X0) is a maximum point of (t, X) → αW α(t, X) +
(
5C0 + m

2

)
βε(t −

s0, X − Y0), we have

−
5C0 + m

2

α
∂tβε(t0 − s0, X0 − Y0) + αW α(t0, X0)

+ F

(
t0, X0,−

5C0 + m/2

α
DXβε(t0 − s0, X0 − Y0) + P

)
≤ 0.

(3.12)

Let i0, j0 and n0 be such that Xi0,j0 = Y0 and s0 = tn0 . Since (s0, Y0) is a

minimum point of (s, Y ) → αW α
h,∆t(s, Y ) − (5C0 + m/2)βε(t0 − s, X0 − Y ), we

obtain

W n0,α
i0+1,j0

− W n0,α
i0,j0

≥
5C0 + m/2

α
[βε(t0 − s0, X0 − Y0 − he1) − βε(t0 − s0, X0 − Y0)],

where e1 = (1, 0)T . From the monotonicity of g,

W n0,α
i0,j0

− W n0−1,α
i0,j0

∆t
+ αW n0,α

i0,j0
+ g

(
s0, Y0,

5C0 + m/2

α
(∆+

1 βε(t0 − s0, X0 − ·))i0 ,j0 + px,

(∆+
1 W n0,α)i0−1,j0 + px, (∆+

2 W n0,α)i0,j0 + py, (∆+
2 W n0,α)i0,j0−1 + py

)
≥ 0.

(3.13)

But

|(∆+
1 βε(t0−s0, X0−·))i0,j0−e1·DY βε(t0−s0, X0−Y0)| =

h

2
|eT

1 D2
Y Y βε(t0−s0, X0−Y )e1|,

for some Y belonging to the segment (Y0, Y0 + he1). Assuming h small enough, so

that Lemma 3.1 (ii) implies that |t0 − s0|
2 + |X0 − Y0|

2 + h2 ≤ ε2

2 , we obtain that

D2
Y Y βε(t0 − s0, X0 − Y ) = 2

ε2 I , then

|(∆+
1 βε(t0 − s0, X0 − ·))i0 ,j0 − e1 · DY βε(t0 − s0, X0 − Y0)| =

h

ε2
. (3.14)
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Now, (3.13), (3.14) and the monotonicity of g yield

W n0,α
i0 ,j0

− W n0−1,α
i0 ,j0

∆t
+ αW n0,α

i0 ,j0

+ g


 s0, Y0,

5C0 + m/2

α
e1 · DY βε(t0 − s0, X0 − Y0) + px,

(∆+
1 W n0,α)i0−1,j0 + px, (∆+

2 W n0,α)i0,j0 + py, (∆
+
2 W n0,α)i0,j0−1 + py




+ C̃1h
5C0 + m/2

ε2α
≥ 0.

Repeating similar estimates for the other arguments in g and for the derivative with

respect to time, we finally find that

5C0 + m/2

α
∂sβε(t0 − s0, X0 − Y0) + αW n0,α

i0 ,j0
+

F

(
s0, Y0,

5C0 + m/2

α
DY βε(t0 − s0, X0 − Y0) + P

)
+ C

h + ∆t

ε2α
≥ 0,

(3.15)

where C is independent of h, ∆t, ε and α.

Subtracting (3.12) and (3.15) and using (F2) we get

αW α(t0, X0)−αW α
h,∆t(s0, Y0) ≤ C

h + ∆t

ε2α
+

C

α

∣∣∣∣
X0 − Y0

ε

∣∣∣∣
2

+
C

α

∣∣∣∣
t0 − s0

ε

∣∣∣∣
2

, (3.16)

where C is independent of h, ∆t, ε and α.

Choose ε = ε(∆t, h) such that ε → 0 as (∆t, h) → (0, 0) and h+∆t
ε2 → 0 as

(∆t, h) → (0, 0). From (i) of Lemma 3.1

sup
i,j,n

|αW P,α(tn, xi, yj) − αW n,P,α
i,j | = m ≤ sup Ψ −

(
5C0 +

m

2

)
βε(t0 − s0, X0 − Y0)

= αW α(t0, X0) − αW α
h,∆t(s0, Y0).

Then from (3.16) and (3.11), we obtain

sup
i,j,n

|αW P,α(tn, xi, yj) − αW n,P,α
i,j | ≤

C

α
o(1) as (∆t, h) → (0, 0).

From the previous estimate, (ii) of Lemma 2.1 and Proposition 3.1 we finally obtain

|F (P ) − F
∆t

h (P )| ≤ K̃1α + K1α +
C

α
o(1),

and letting (h, ∆t) → (0, 0), we find that

lim sup
(∆t,h)→(0,0)

|F (P ) − F
∆t

h (P )| ≤ K̃1α + K1α,

for any fixed α > 0. This implies that lim(∆t,h)→(0,0) F
∆t

h (P ) = F (P ). Since K1 =

K1(P ) and K̃1 = K̃1(P ) are bounded for P lying on compact subsets of R
2, the

convergence is uniform on compact sets.
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Remark 3.1. If F is coercive, then we can get an estimate of the rate of convergence

of F
∆t

h to F . Indeed, we have:

|F
∆t

h − F | ≤ (h + ∆t)
1
2 ,

see Proposition A.3 in 1.

We conclude this subsection by recalling the principal properties of F
∆t

h .

Proposition 3.3. Assume (g1)-(g6), (H1)-(H4). Then the approximate effective

Hamiltonian F
∆t

h is Lipschitz continuous with a Lipschitz constant independent of

h and ∆t and for any px ∈ R

F
∆t

h (px, 0) ≥ C2|px|.

Proof. For the proof of the Lipschitz continuity of F , see the proof of Proposition

A.2 in 1.

Let us show the coercivity property. Let (W n,P,α
i,j ) be a solution of (3.4) for

P = (px, 0). Let (i0, j0, n0) be a maximum point of (W n,P,α
i,j ), then

W n0,P,α
i0 ,j0

− W n0−1,P,α
i0,j0

∆t
≥ 0, (∆+

1 W n0,P,α)i0,j0 ≤ 0, (∆+
1 W n0,P,α)i0−1,j0 ≥ 0,

(∆+
2 W n0,P,α)i0,j0 ≤ 0, (∆+

2 W n0,P,α)i0,j0−1 ≥ 0.

By the monotonicity assumption (g1) and (2.4), we have

F
∆t

h (px, 0) ≥ g(tn0 , xi0 , yi0 , px, px, 0, 0) = F (tn0 , xi0 , yi0 , px, 0) ≥ C2|px|.

3.1. Long time approximation

A different way to approximate the effective Hamiltonian is given by the evolutive

Hamilton-Jacobi equation
{

Vt + F (t, x, y, px + DxV, py + DyV ) = 0, (t, x, y) ∈ (0, +∞) × R
N+1,

V (0, x, y) = V0(x, y), (x, y) ∈ R
N+1,

(3.17)

where V0 is bounded and uniformly continuous on R
N+1. Indeed, it is proved in 3

that (3.17) admits a unique solution V which is bounded and uniformly continuous

on [0, T ]× R
N+1 for any T > 0, and satisfies

lim
t→+∞

V (t, x, y)

t
= −F (P ).

We approximate (3.17) by the implicit Eulerian scheme

V n+1,P
i,j

−V n,P
i,j

∆t + S(tn, xi, yj , h, [V n+1,P ]i,j) = 0

V 0,P
i,j = V0(xi, yj),

(3.18)
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where S is defined as in (3.2). A proof of the existence of a solution V = (V n,P
i,j ) of

(3.18) is given in 9 under assumptions (g1)-(g5).

Let W = (W n,P,α
i,j ) be a solution of (3.4), then by comparison, there exist con-

stants c and c such that

c + W n,P,α
i,j − nF

∆t

h (P )∆t ≤ V n,P
i,j ≤ c + W n,P,α

i,j − nF
∆t

h (P )∆t.

Since W is bounded, this proves that

lim
n→+∞

V n,P
i,j

n∆t
= −F

∆t

h (P ).

3.2. Approximation of the homogenized problem

We now come back to the N -dimensional homogenized problem (1.3). From The-

orem 1.2 we know that if H is the effective Hamiltonian in (1.3), then H(p) =

F (p,−1) for any p ∈ R
N . Hence, from Proposition 3.2, the discrete Hamiltonian

H
∆t

h (p) := F
∆t

h (p,−1),

is an approximation of H(p) for any p ∈ R
N .

As in 1, we approximate (1.3) by the problem
{

∂tu∆t,h + H
∆t

h (Du∆t,h) = 0, (t, x) ∈ (0, +∞) × R
N ,

u∆t,h(0, x) = u0(x), x ∈ R
N ,

(3.19)

where h and ∆t are fixed, and u0 is the same initial datum as in (1.3).

By Proposition 3.3 H
∆t

h is Lipschitz continuous and coercive, so (3.19) has a

unique viscosity solution u∆t,h which is an approximation of the solution u0 of

(1.3):

Proposition 3.4. Let u0 and u∆t,h be respectively the viscosity solutions of (1.3)

and (3.19). Then for any T > 0

sup
[0,T ]×RN

|u∆t,h − u0| → 0 as (∆t, h) → (0, 0). (3.20)

Proof. If L0 is the Lipschitz constant of the initial datum u0, then, by Proposition

2.2, the functions u0(t, ·) and u∆t,h(t, ·) are Lipschitz continuous with same Lipschitz

constant L0. By Proposition 3.2 the approximate Hamiltonian H
∆t

h converges to H

uniformly for |p| ≤ L. Hence (3.20) follows by the following proposition, which is a

standard estimate in the regular perturbation theory of Hamilton-Jacobi equations

(see Theorem VI.22.1 in 2)

Proposition 3.5. If there exists η > 0 such that if Hi, i = 1, 2, satisfy (H1)-(H3)

with

‖H1 − H2‖∞ ≤ η,
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and if ui, i = 1, 2, are viscosity solutions of
{

ut + Hi(Du) = 0, (t, x) ∈ (0, T ) × R
N

u(0, x) = u0(x), x ∈ R
N ,

where u0 is bounded and uniformly continuous on R
N , then, for some constant C,

‖u1 − u2‖∞ ≤ Cη.

Remark 3.2. In order to compute numerically the approximation of u0, we need

further discretizations. Indeed, we have approximated H(p) by H
∆t

h (p) for any fixed

p ∈ R
N . Since it is not possible to compute H

∆t

h (p) for any p, one possibility is to

introduce a triangulation of a bounded region of R
N and compute H

∆t

h (pi), where

pi are the vertices of the simplices and to approximate all the other values H
∆t

h (p)

by H
∆t

h,k(p), where H
∆t

h,k is the linear interpolation of H
∆t

h and we denote by k the

maximal diameter of the simplices. The solution uk
∆t,h of

{
∂tu

k
∆t,h + H

∆t

h,k(Duk
∆t,h) = 0, (t, x) ∈ (0, +∞) × R

N ,

uk
∆t,h(0, x) = u0(x), x ∈ R

N ,
(3.21)

is an approximation of u∆t,h as k → 0 and hence, by Proposition 3.4, of u0 as

(∆t, h, k) → (0, 0, 0). Finally, discretizing (3.21) by means a monotone, consistent

and stable approximation scheme, we can compute numerically an approximation

of the solution u0 of 1.3. See 1 for details.

4. Numerical Tests

The present paragraph is devoted to the description of numerical approximations

of the effective Hamiltonian.

4.1. Results

4.1.1. First case

We discuss a one dimensional case where the Hamiltonian is

H(x, u, p) = 2 cos(2πx) + sin(8πu) + (1 − cos(6πx)/2)|p|.

We have used two approaches for computing the effective Hamiltonian.

(g1) Barles cell problem: the first approach consists of increasing the dimension and

considering the long time behavior of the continuous viscosity solution w of

wt + F (x, y, p + Dxw,−1 + Dyw) = 0, (t, x, y) ∈ (0,∞) × R × R,

w(0, x, y) = 0, (x, y) ∈ R × R,
(4.1)

where F is given by (1.5). In the present case, from the periodicity of H with

respect to x and u, w is 1-periodic with respect to x and 1/4-periodic with

respect to y. We know that when t → ∞, w(t, ·, ·)/t tends to a real number λ
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and that H(p) = −λ.

For approximating (4.1) on a uniform grid, we have used an explicit Euler

time marching method with a Godunov monotone scheme (see 12,22). A semi-

implicit time marching scheme which allows for large time steps may be used

as well, see 1, but very large time steps cannot be taken because of the periodic

in time asymptotic behaviour of w.

Alternatively, we have also used the higher order method described in 19, see

also 20. It is a third order TVD explicit Runge-Kutta time marching method

with a weighted ENO scheme in the spatial variables. This weighted ENO

scheme is constructed upon and has the same stencil nodes as the third order

ENO scheme but can be as as high as fifth order accurate in the smooth part

of the solution.

(g2) Imbert-Monneau cell problem: when p is a rational number (p = n
q ), instead

of considering a problem posed in two space dimensions, one possible way of

approximating the effective Hamiltonian H(p) is to consider the cell problem

vt + H(x, v + p · x, p + Dv) = 0, (t, x) ∈ (0,∞) × R,

v(0, x) = 0 x ∈ R.
(4.2)

This problem has a unique continuous solution which is periodic of period q

with respect to x (in fact, the smallest period of v may be a divisor of q).

From 16 (Theorem 1), we know that there exists a unique real number λ such

that v(τ,x)
τ converges to λ as τ → ∞ uniformly in x, and that H(p) = −λ.

Moreover, when t is large, the function v(t, x)−λt becomes close to a periodic

function of time. In what follows, (4.2) will be referred to as Imbert-Monneau

cell problem. Note that the size of the period varies with p and may be arbi-

trary large. This is clearly a drawback of this approach which is yet the fastest

one for one dimensional problems and moderate values of q.

For approximating (4.2) on a uniform grid, we have used either the above-

mentioned explicit Euler time marching method with a Godunov monotone

scheme or the third order TVD explicit Runge-Kutta time marching method

with a weighted ENO scheme in the spatial variable.

In Figure 1, we plot the graph of the effective Hamiltonian computed with the high

order methods and both Imbert-Monneau and Barles cell problems. For Barles cell

problems, the grid of the square [0, 1] × [0, 1/4] has 400 × 100 nodes and the time

step is 1/1000. For Imbert-Monneau cell problems, the grids in the x variable are

uniform with a step of 1/400 and the time step is 1/1000. The two graphs are

undistinguishable. It can be seen that the effective Hamiltonian is symmetric with

respect to p and constant for small values of p, i.e. |p| . 1.3. The points where

we have computed the effective Hamiltonian are concentrated near 1.3 where the

slope of the graph changes. Our computations clearly indicate that the effective

Hamiltonian is piecewise linear.

In order to show the convergence of v(τ,x)
τ and w(τ,x)

τ , we take p = 1.3 so the space
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Fig. 1. First case: the effective Hamiltonian as a function of p obtained with both Barles and
Imbert-Monneau cell problems.

period of the Imbert-Monneau cell problem is 5. In Figure 2, we plot 〈w(τ)〉
τ (left)

and 〈v(τ)〉
τ (right) as a function of τ , where 〈v(τ)〉 is the median value of v(τ, ·) on

a spatial period. Both functions converge to constants when τ → ∞ and the limit

are close to each other (the error between the two scaled median values is smaller

than 10−3 at τ ∼ 60 and we did not consider much longer times). In Figure 3, we

plot the graphs of the functions w(τ, 0, 0)−〈w(τ)〉 (left) and v(τ, 0)−〈v(τ)〉 (right).

We see that these functions become close to time-periodic. In Figure 4 (top), we

plot the contour lines of the function w(τ, x, y)/τ as a function of (x, y) for τ = 60.

In the bottom part of the figure we plot the graph of y → w(τ, 0.13, y)/τ for the

same value of τ . We see that w has internal layers. In Figure 5, we plot the graph

x → v(τ, x)/τ for τ = 60. We first see that the function takes all its values in a small

interval and has very rapid variations with respect to x (is nearly discontinuous).

This does not contradict the theory, because there are no uniform estimates on the

modulus of continuity of v(τ, ·)/τ .

4.1.2. Second case

We consider a two dimensional problem, where the Hamiltonian is

H(x, u, p) = cos(2πx1) + cos(2πx2) + cos(2π(x1 − x2)) + sin(2πu)

+

(
1 −

cos(2πx1)

2
−

sin(2πx2)

4

)
|p|.
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Fig. 2. First case, p = 1.3. Top: the median value of w(τ, ·)/τ on a period as a function of τ .
Bottom: the median value of v(τ, ·)/τ on a period as a function of τ

For this case, only the Imbert-Monneau cell problems have been approximated on

uniform grids with step 1/200. The time step is 0.005. In Figure 6, we plot the

contours and the graph of the effective Hamiltonian computed with the high order

method. We can see that the effective Hamiltonian is symmetric with respect to

p = (0, 0), constant for small vectors p. In Figure 7, we plot 〈v(τ)〉
τ as a function

of τ . We see that this function converges when τ → ∞. In Figure 8, we plot the

contours of v(τ, ·)/τ for τ = 59.935 and p = (1, 1). We see that for large values of

τ , v is close to discontinuous.
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Fig. 5. First case, Imbert-Monneau cell problem, p = 1.3: Top: Third order Runge Kutta/WENO
scheme: v(τ, x)/τ as a function of x for τ = 60; Middle part: a zoom. Bottom: same computation
with Euler/Godunov scheme with the same grid parameters: some oscillations are smeared out,
but the average value of the solution is well computed.
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Fig. 6. Second case, the effective Hamiltonian computed by solving Imbert-Monneau cell problems.
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Fig. 7. Second case, p = (1, 1). The median value of v(τ, ·)/τ on a period as a function of τ .
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Fig. 8. Second case, the contours of the solution of Imbert-Monneau cell problem for p = (1, 1) at
time τ = 59.935.


