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Abstract. We construct heteroclinic orbits for a strongly nonlocal integro-differential equation. Since
the energy associated to the equation is infinite in such strongly nonlocal regime, the proof, based on
variational methods, relies on a renormalized energy functional, exploits a perturbation method of viscos-
ity type and develops a free boundary theory for a double obstacle problem of mixed local and nonlocal
type.

The description of the stationary positions for the atom dislocation function in a perturbed crystal, as
given by the Peierls-Nabarro model, is a particular case of the result presented.
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1. Introduction

Heteroclinic orbits are a classical topic in the context of dynamical systems. Not only they are trajec-
tories that show an interesting behavior, providing a connection between two different rest positions, but
they are often the “building blocks” for constructing complicated orbits, drifting from one equilibrium
to another, possibly leading to a chaotic dynamics. On the other hand, the recent literature has studied
the case in which the “classical” differential equations are replaced by integro-differential equations.

The study of these nonlocal equations is not only motivated by mathematical curiosity and by the will
driving the scientists of facing with new challenging problems, but it also possesses concrete motivations
in applied sciences: in particular, our main motivation for the problem treated in this paper comes from
the description of the stationary positions for the atom dislocation in crystals, as provided by the

2010 Mathematics Subject Classification. 70K44, 37C29, 34A08.
Key words and phrases. Heteroclinic solutions, Peierls-Nabarro model, crystal dislocation, fractional Laplacian, nonlo-

cal equations.
This work has been carried out during a very pleasant visit of the first and third authors to the University of Texas.

Supported by the Australian Research Council Discovery Project grant “N.E.W. Nonlocal Equations at Work” and
by the G.N.A.M.P.A. project “Nonlocal and degenerate problems in the Euclidean space”. The authors are members
of G.N.A.M.P.A.–I.N.d.A.M..

1



2 SERENA DIPIERRO, STEFANIA PATRIZI AND ENRICO VALDINOCI

Peierls-Nabarro model, see e.g. [Nab79] and Section 2 of [DPV15]. In this context, the evolution of the
dislocation function on the “slip line” (i.e., the intersection between the “slip plane”, along which the
crystal experiences a plastic deformation, and a transversal reference plane) is described by an equation
of fractional type, as a consequence of the balance between the elastic bonds that link the atoms and
the internal force of the crystals which tends to place all the atoms into a periodically organized lattice.

Concretely, in the Peierls-Nabarro model for edge dislocations, one considers equations that can be
written along the slip line as

(1.1)
√
−∆Q(x) +W ′(Q(x)) = 0 for any x ∈ R,

where W is a multi-well potential and the diffusion operator is the square root of the Laplacian, which
(up to normalizing multiplicative constants) is the integro-differential operator

(1.2)
√
−∆Q(x) := P.V.

∫
R

Q(x)−Q(y)

|x− y|2
dy := lim

%→0

∫
R\B%(x)

Q(x)−Q(y)

|x− y|2
dy.

In the setting of (1.1), the function Q : R→ R represents a dislocation function (i.e., roughly speaking,
a measure of the atomic disregistry with respect to the ideal rest configuration of a perfect crystal); the
diffusion operator in (1.1) and (1.2) takes into account the effect on the slip line of the elastic bonds
between different atoms in the crystal and the potential W is induced by the large-scale pattern of the
crystal itself (see e.g. [Nab79] and Section 2 of [DPV15] for additional details).

The mathematical framework in which we work here is the following. Given a function Q : R → R,
the nonlocal operator that we take into account in this paper is given by

(1.3) LQ(x) := P.V.

∫
R

(
Q(x)−Q(y)

)
K(x− y) dy := lim

%→0

∫
R\B%(x)

(
Q(x)−Q(y)

)
K(x− y) dy.

The kernel K is supposed to be even and such that

(1.4)
θ0

|r|1+2s
χ[0,r0](r) 6 K(r) 6

Θ0

|r|1+2s
,

for some Θ0 > θ0 > 0 and some r0 > 0, with

(1.5) s ∈
(

1

4
,
1

2

]
.

Of course, the case under consideration comprises in particular the original Peierls-Nabarro model
in (1.2), which corresponds to the choice

(1.6) s :=
1

2
and K(r) :=

1

|r|2
.

In the equations that we consider, the diffusive operator L is balanced by a forcing term of potential
type. More precisely, we consider a non-negative multi-well potential W ∈ C2(R,R) with a locally finite
set of minima. Namely, we suppose that W > 0 and that there exists Z ⊂ R which is a discrete set
(i.e., it has no accumulation points) with

(1.7) 0 ∈Z

and such that

(1.8) W (ζ) = 0 for any ζ ∈Z and W (r) > 0 for any r ∈ R \Z.

We also suppose that W grows quadratically from its minima, that is

(1.9) c0|ξ|2 6 W (ζ + ξ) 6 C0|ξ|2,

for some C0 > c0 > 0, for all ζ ∈Z and ξ ∈ Bδ0 , with δ0 > 0.
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In our framework, the potential is modulated by an oscillatory function a. Such function is supposed
to maintain the sign of the potential, namely we assume that

(1.10) a(x) ∈ [a, a] for all x ∈ R,

for some a > a > 0.
We also assume that a is “non-degenerate”. More precisely, we suppose that there exist m1, m2 ∈ R

and ω, θ > 0 such that

(1.11) m2 −m1 > 2ω + θ,

and, for i ∈ {1, 2},

a(x)− a(x− θ) > γ and a(x)− a(x+ θ) > γ, for all x ∈ [mi − ω,mi + ω],(1.12)

for1 some γ > 0.

In this setting, the equation that we study here has the form

(1.13) LQ?(x) + a(x)W
(
Q?(x)

)
= 0 for all x ∈ R.

Of course, when L is replaced by the classical second order differential operator, equation (1.13) may
be seen as a pendulum-like equation.

The main objective of this paper is to construct heteroclinic solutions of (1.13), i.e. orbits which

connect two different equilibria. To this aim, given ζ1, ζ2 ∈ Z, we take Q]
ζ1,ζ2
∈ C∞(R) to be such

that Q]
ζ1,ζ2

(x) = ζ1 for any x ∈ (−∞,−1) and Q]
ζ1,ζ2

(x) = ζ2 for any x ∈ (1,+∞).
To deal with the problem of constructing special solutions of (1.13), it is convenient to introduce a

variational formulation. To this aim, we consider here the energy functional

I0(Q) :=

∫
R
a(x)W

(
Q(x)

)
dx

+
1

4

∫∫
R×R

(∣∣Q(x)−Q(y)
∣∣2 − ∣∣(Q]

ζ1,ζ2
)(x)− (Q]

ζ1,ζ2
)(y)

∣∣2)K(x− y) dx dy.

(1.14)

We remark that critical points of I0 satisfy (1.13).
Also, given X, Y ⊆ R, we use the notation

(1.15) [v]K,X×Y :=

√∫∫
X×Y

∣∣v(x)− v(y)
∣∣2K(x− y) dx dy .

Then, in this setting, our main result on the existence of heteroclinics for equation (1.13) is the following:

1For concreteness, we mention that the function

a(x) := 2 + ε cos(δx)

with ε, δ ∈ (0, 1] satisfies (1.12) with m1 := 0, m2 := 2π
δ , ω := π

4δ , θ := π
δ and γ :=

√
2 ε. Indeed, in this case,

inf
x∈[m1−ω,m1+ω]∪[m2−ω,m2+ω]

a(x)− a(x± θ)

= inf
x∈[− π

4δ ,
π
4δ ]∪[

2π
δ −

π
4δ ,

2π
δ + π

4δ ]
ε
(

cos(δx)− cos(δx± δθ)
)

= inf
y∈[−π

4 ,
π
4 ]
ε
(

cos y − cos(y ± π)
)

= 2 inf
y∈[−π

4 ,
π
4 ]
ε cos y

=
√

2 ε.

This example shows that there exist “small and slow perturbations of constant functions” that satisfy (1.12).
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Theorem 1.1. Let ζ1 ∈Z. Then, there exist ζ2 ∈Z \ {ζ1} and a solution Q? of (1.13) such that

(1.16) lim
x→−∞

Q?(x) = ζ1 and lim
x→+∞

Q?(x) = ζ2.

Moreover, Q? is an energy minimizer, in the sense that

(1.17) I0(Q?) 6 I0(Q) for all Q s.t. Q−Q]
ζ1,ζ2
∈ C∞0 (R).

In addition, if v? := Q? −Q]
ζ1,ζ2

, we have that

[v?]K,R×R + ‖v?‖L2(R) 6 κ,(1.18)

and ‖v?‖C0,α(R) 6 κ for all α ∈ (0, 2s),(1.19)

for some κ > 0, which possibly depends on Q]
ζ1,ζ2

and on structural constants.

We observe that Theorem 1.1 is new even in the model case of the square root of the Laplacian (as
described by (1.2) and (1.6)).

Moreover, in the special case in which W is an even and periodic potential vanishing on the integers,
the role of ζ2 in Theorem 1.1 can be made explicit: as a matter of fact, in this case, given any ζ1 ∈ Z,
one can take both ζ2 := ζ1 − 1 and ζ2 := ζ1 + 1 in the statement of Theorem 1.1 (this follows from
Theorem 1.1 here and the discussion in (5.3) of [CDV17]). That is, in the case of even and periodic
potentials, Theorem 1.1 guarantees a heteroclinic connection from each minimum of the potential to
each of its closest neighborhood.

We also point out that, differently from the classical case, the asymptotic expression in (1.16) is not
an immediate consequence of the energy estimates in (1.18) since, when s ∈

(
0, 1

2

]
, functions in Hs(R)

are not necessarily infinitesimal at infinity (see e.g. Appendix B for a simple example of this important
phenomenon).

The construction of heteroclinic orbits for ordinary differential equations is a well-studied topic in the
literature and, in this sense, Theorem 1.1 here is a nonlocal counterpart of some of the celebrated results
obtained in [Rab89,Rab94,RCZ00,Rab00] for ordinary differential equations and Hamiltonian systems.
Of course, the case of nonlocal equations is conceptually quite different from that of ordinary differential
equations, since usual “glueing” and “cut-and-paste” methods are not available, due to far-away energy
interactions. We refer to [BV16] for a general introduction to nonlocal problems, also motivated from
water wave models, phase transitions, material sciences and biology.

A result similar to Theorem 1.1 when the nonlocal parameter s lies in the range
(

1
2
, 1
)

has been
obtained in [DPV17]. In case of homogeneous media (i.e., when a is constant), heteroclinic connections
corresponding to parameter ranges s ∈

(
0, 1

2

]
have been studied in [PSV13, CS15, CMY17] by energy

renormalization methods.

Concerning the nonlocal parameter range considered in this paper, we recall that the case s ∈
(
0, 1

2

)
can present several technical and conceptual differences with respect to the case s ∈

(
1
2
, 1
)

(the case s = 1
2

being typically “in between” the two cases). For instance, as shown in [CS10,SV12], several fractional
equations corresponding to the parameter range s ∈

[
1
2
, 1
)

present a “local behavior” at a large scale,

while they preserve a “nonlocal behavior” at any scale when s ∈
(
0, 1

2

)
.

The case s = 1
2
, K(r) = 1

|r|2 and W (r) = 1 − cos(2πr) (which is indeed a particular case of our

general framework) plays also an important role in the description of the atom dislocations in crystals,
according to the so-called Peierls-Nabarro model, see e.g. [Nab79] (and compare with (1.1) here). This
model is in turn related, at a microscopic scale, to the Frenkel-Kontorova model, see [FIM12].

Related models appear also in the study of the Benjamin-Ono equation, see [Tol97], in boundary
reaction equations, see [CSM05], and in spin systems on lattices, see [ABC06].

In addition, the study of nonlocal equations with a singular kernel is a very intense subject of research
in terms of harmonic analysis, see e.g. [Ste70], and of regularity theory, see e.g. [Sil05].
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In our setting, to deal with the case s ∈
(

1
4
, 1

2

]
we will adopt a strategy that has been also very

recently used in [CMY17] and based on two basic steps:

• We will consider a renormalized energy functional. This device is needed in order to avoid the
divergence of the energy due to nonlocal effects in this parameter range. We stress that this
energy divergence is unavoidable, since, for instance, one can easily check that the fractional
Sobolev (or Aronszajn-Gagliardo-Slobodeckij) seminorm in Hs(−R,R) of a smooth function
connecting two constants goes like logR when s = 1

2
, and like R1−2s when s ∈

(
0, 1

2

)
, thus

diverging as R→ +∞.
• We will perturb the original energy functional by a classical Dirichlet energy. This step is very

convenient, since it allows to deal with continuous trajectory in a perturbed setting (notice
that, when s ∈

(
0, 1

2

]
, functions in Hs(R) are not necessarily continuous, see e.g. Appendix B

for a simple example). After dealing with a minimization argument for such perturbed energy
functional, we will obtain uniform estimates that will allow us to pass to the limit.

A series of analytical techniques coming from elliptic partial differential equations are also crucially
exploited in our proofs:

• We will make use of viscosity solution methods in order to obtain regularity theories that are
uniform in the perturbation parameter related to the Dirichlet energy (this is a fundamental
step in order to “remove” the “local and elliptic energy perturbation” in the limit).
• We will study a double obstacle problem of mixed local and nonlocal type, which arises from

the constrained minimization of the energy functional (this step is crucial in order to estimate
“how the orbits separates from the constraints”).

In general, we believe that a very interesting feature provided by the equations related to the Peierls-
Nabarro model lies in the fact that their complete understanding requires a synergic combination of
resources and methods coming from different specific backgrounds, which include, among the others,
mathematical physics, calculus of variations, partial differential equations, free boundary problems,
geometric measure theory, harmonic analysis and the theory of pseudodifferential operators.

The parameter range considered in this paper has also a special energy feature. Namely, while the
interaction energy of fractional Sobolev type of a heteroclinic connection is divergent, the part coming
from the potential is typically finite under assumption (1.5). To check this, we recall formula (12)
in [PSV13], according to which a heteroclinic orbitQ(x) converges to the equilibrium in the homogeneous
case like const

1+|x|2s . Since, by (1.9), the potential W is quadratic near the equilibria, the potential energy

term of such trajectory behaves like ∫
R

const

(1 + |x|2s)2
dx,

which is finite when s lies above the threshold 1/4.

For this reason, when s lies below 1/4, it could be expected that a second energy renormalization is
needed in order to apply variational methods (e.g. in the approach given by formula (13) in [PSV13])
and we plan to explore this parameter range in future works.

We also remark that the case considered in this paper is not translation invariant, in view of the
modulating function a. This is an important difference with respect to the previous literature on
the subject, since the translation invariance implies the monotonicity of the heteroclinic, which in
turn implies a series of analytic estimates on the energy functional and allows the use of more direct
minimization principles (see [PSV13,CS15,CMY17] for further details).

The rest of the paper is organized as follows. In Section 2, we fix some notation, to be used in the rest
of the paper. In Section 3, we give two elementary proofs establishing a uniform bound for a nonlocal
equation and a regularity result for a perturbed problem (in our setting, such bound is important to
obtain uniform estimates in a perturbed problem, and the regularity result is useful to estimate errors
in the “cut-and-paste” procedures).
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The proof of Theorem 1.1 is then developed in Sections 4, 5, 6, 7, 8 and 9. More precisely, Section 4
is devoted to an energy estimate from below. In our setting, this bound is important to avoid that
large excursions of the orbits may drift the renormalized energy to −∞ and to guarantee the necessary
compactness for the direct methods of the calculus of variations.

Then, we exploit these variational methods to construct the heteroclinic connections, by proceeding
step by step. First, in Section 5 we consider a constrained and perturbed problem. The additional
perturbation provides the technical advantage that all the orbits with finite energy are in fact continuous,
and this fact will allow us to make use of geometric arguments in the analysis of such orbits. The
constrain is also useful to “force” the orbits close to the equilibria at infinity. As a matter of fact,
in Section 6, using a double obstacle problem approach, we show that constrained minimizers are
continuous with uniform bounds.

Interestingly, this obstacle problem is also of mixed local and nonlocal type, and this is a class of
problems rarely studied in the existing literature. For our goals, the achievement of uniform estimates
for this problem is crucial in order to have precise information when the orbit touches the variational
constraints.

Also, in Sections 7 and 8 we recall the notions of clean intervals and clean points, and we prove some
stickiness properties of the energy minimizers.

Then, in Section 9, by taking the asymptotic constraints “far enough”, we will produce a free, i.e.
unconstrained, minimizer. Finally, in Section 10, by using estimates that are uniform with respect to
the perturbative parameter, we will be able to remove the perturbation and obtain the solution claimed
in Theorem 1.1.

2. Notation

• Given I, J ⊆ R and f , g : R→ R, we set

(2.1) BI,J(f, g) :=

∫∫
I×J

(
f(x)− f(y)

)(
g(x)− g(y)

)
K(x− y) dx dy,

and

(2.2) EI×J(f) :=

∫∫
I×J

(∣∣f(x)− f(y)
∣∣2 − ∣∣(Q]

ζ1,ζ2
)(x)− (Q]

ζ1,ζ2
)(y)

∣∣2)K(x− y) dx dy.

Notice that

BJ,I(f, g) =

∫∫
J×I

(
f(x)− f(y)

)(
g(x)− g(y)

)
K(x− y) dx dy

=

∫∫
I×J

(
f(y)− f(x)

)(
g(y)− g(x)

)
K(y − x) dy dx = BI,J(f, g),

(2.3)

since K is even. Similarly,

EI×J(f) = EJ×I(f).

We will also use the notation

EI2(f) = EI×I(f).

• The Lebesgue measure of a set A will be denoted by |A|.

3. A uniform bound and a regularity result for a nonlocal equation

We provide here a general uniform bound for solutions of nonlocal equations, which will be exploited
in this paper in the proof of the forthcoming Corollary 5.2, to obtain estimates that are uniform in the
perturbation parameter η. The result will be applied to functions whose domain is one dimensional, but,
for the sake of generality, we state and prove the result in RN for all N ∈ N, N > 1, and s ∈ (0, 1) (for
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this, the power 1 + 2s in (1.4) gets replaced by N + 2s). So, in this section, Lu denotes the differential
operator defined on smooth bounded functions as follows

(3.1) Lu(x) := P.V.

∫
RN

(
u(x)− u(y)

)
K(x− y) dy := lim

%→0

∫
RN\B%(x)

(
u(x)− u(y)

)
K(x− y) dy,

where K is an even kernel such that

θ0

|r|N+2s
χ[0,r0](r) 6 K(r) 6

Θ0

|r|N+2s
,

for some Θ0 > θ0 > 0 and some r0 > 0, with s ∈ (0, 1). Of course, the setting in (1.3) is comprised here
with N := 1. Then we bound the solution of perturbed nonlocal operators as follows:

Lemma 3.1. Let η > 0. Let u0 ∈ L∞(RN \B1) and f ∈ L∞(B1). Let u : RN → R be a solution of{
−η∆u+ Lu = f in B1,

u = u0 in RN \B1.

Then u ∈ L∞(RN) and

‖u‖L∞(RN ) 6 const
(
‖u0‖L∞(RN\B1) + ‖f‖L∞(B1)

)
.

Here, the positive constant “ const ” depends on N and on the structural constants of L but it is inde-
pendent of η.

Proof. We let µ ∈ (0, 1), to be taken conveniently small in what follows. We define

v?(x) := max

{
0,

1

µ2
− |x|2

}
.

Notice that

(3.2) v? > 0 in B1/µ ⊃ B1.

We claim that

(3.3) Lv? > c in B1,

for some c ∈ (0, 1), as long as µ is sufficiently small. To check this, for any x̄ ∈ B1 we define

rx̄(x) := 2x̄ · (x̄− x)χB1/
√
µ(x̄)(x) +

1

µ2
− |x̄|2 = 2x̄ · (x̄− x)χB1/

√
µ(x̄)(x) + v?(x̄).

We observe that in B1/
√
µ(x̄) the function rx̄ describes the tangent plane to v? at x̄. Hence, since v? is

concave in its positivity set, it follows from (3.2) that

(3.4) rx̄ > v? in B1/
√
µ(x̄).
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Furthermore, in RN \B1/
√
µ(x̄), it holds that rx̄ = v?(x̄) and therefore∫

RN\B1/
√
µ(x̄)

(
rx̄(y)− v?(y)

)
K(x̄− y) dy

=

∫
RN\B1/

√
µ(x̄)

(
v?(x̄)− v?(y)

)
K(x̄− y) dy

=

∫
B1/µ\B1/

√
µ(x̄)

(
|y|2 − |x̄|2

)
K(x̄− y) dy +

∫
RN\B1/µ

(
1

µ2
− |x̄|2

)
K(x̄− y) dy

> −
∫
RN\B1/

√
µ(x̄)

|x̄|2K(x̄− y) dy

> − const

∫
RN\B1/

√
µ

dξ

|ξ|N+2s

= − constµs.

(3.5)

Also, since K is even, for any % > 0 we have that∫
RN\B%(x̄)

x̄ · (x̄− y)χB1/
√
µ(x̄)(y)K(x̄− y) dy =

∫
RN\B%

x̄ · ξ χB1/
√
µ
(ξ)K(ξ) dξ = 0.

Accordingly, by (3.1) and (3.5),

Lv?(x̄) = lim
%→0

∫
RN\B%(x̄)

(
2x̄ · (x̄− y)χB1/

√
µ(x̄)(y) + v?(x̄)− v?(y)

)
K(x̄− y) dy

= lim
%→0

∫
RN\B%(x̄)

(
rx̄(y)− v?(y)

)
K(x̄− y) dy

> lim
%→0

∫
B1/
√
µ(x̄)\B%(x̄)

(
rx̄(y)− v?(y)

)
K(x̄− y) dy − constµs.

Hence, since B1/
√
µ(x̄) ⊇ Br0(x̄) if µ is small enough, using (3.4) we can write that

constµs + Lv?(x̄) >
∫
Br0 (x̄)\Br0/2(x̄)

(
rx̄(y)− v?(y)

)
K(x̄− y) dy

> const

∫
Br0 (x̄)\Br0/2(x̄)

(
rx̄(y)− v?(y)

)
|x̄− y|−N−2s dy

= const

∫
Br0 (x̄)\Br0/2(x̄)

(
2x̄ · (x̄− y)− |x̄|2 + |y|2

)
|x̄− y|−N−2s dy

= const

∫
Br0 (x̄)\Br0/2(x̄)

|x̄− y|2 |x̄− y|−N−2s dy

= const

∫
Br0\Br0/2

|ξ|2−N−2s dξ

= const .

By taking µ conveniently small, this proves (3.3), as desired.
The computations above have fixed the size of µ once and for all. Therefore, it holds that

(3.6) ‖v?‖L∞(RN ) 6 const .

Let now M := c−1
(
‖u0‖L∞(RN\B1) + ‖f‖L∞(B1)

)
and β := M(v? + 1). Notice that, outside B1, we have

that β > M > u0 = u. Moreover, in B1, it holds that Lβ = MLv? > cM > f , thanks to (3.3). Also,
by concavity, we have that ∆β = M∆v? 6 0 in B1.
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All in all, we have that
−η∆β + Lβ > f = −η∆u+ Lu in B1.

Consequently, by Comparison Principle, we find that β > u in RN and therefore, by (3.6),

u 6 ‖β‖L∞(RN ) 6M
(
‖v?‖L∞(RN ) + 1) 6 constM.

Similarly, we see that u > − constM . These observations imply the desired result. �

Next is a uniform regularity result dealing with a perturbed problem:

Lemma 3.2. Let η ∈ [0, 1], s ∈ (0, 1) and f1, f2 ∈ R. Let u ∈ L∞(RN)∩C(B1) be a viscosity subsolution
of

(3.7) −η∆u+ Lu+ f1 = 0 in B1,

and a viscosity supersolution of

(3.8) −η∆u+ Lu+ f2 = 0 in B1.

Then, u ∈ C0,α(B1/2) for any α < min{2s, 1} and

(3.9) [u]C0,α(B1/2) 6 C
(
f2 − f1 + ‖u‖L∞(RN )

) α
2s ‖u‖1− α

2s

L∞(RN )
,

for some C > 0 independent of η.

Proof. We use appropriate techniques from the theory of regularity of viscosity solutions of uniformly el-
liptic second-order local operators, see [IL90], and recently extended to nonlocal operators, see e.g. [BCI11,
MP12], adapted to our context. Let us introduce the following notation: given r > 0, for a function φ
we define

L1,rφ(x) :=

∫
{|x|6r}

(φ(x)− φ(x+ z) + χBr(z)∇u(x) · z)K(z) dz

and

L2,rφ(x) :=

∫
{|x|>r}

(φ(x)− φ(x+ z))K(z) dz

where χBr is the indicator function of Br. Then,

(3.10) Lφ(x) = L1,rφ(x) + L2,rφ(x).

We let φ ∈ C∞(RN ;R+
0 ) ∩ W 2,∞(RN) be such that φ(x) = 0 for all x ∈ B1/2 and φ(x) > 1 for all

x ∈ RN \B3/4. We then define

(3.11) ψ(x) := 2‖u‖L∞(RN )φ(x).

Since φ ≡ 0 in B1/2, to prove that u ∈ C0,α(B1/2) for any α < 2s, it is enough to show that given
any α < 2s, with α ∈ (0, 1), there exists L > 0 such that, for all x1, x2 ∈ RN ,

(3.12) u(x1)− u(x2)− L|x1 − x2|α − ψ(x1) 6 0.

We argue by contradiction, assuming that (3.12) does not hold true. For ε > 0, let uε and uε be
respectively the sup and inf convolution of u in RN , i.e.,

uε(x) := sup
y∈RN

(
u(y)− 1

2ε
|x− y|2

)
and uε(x) := inf

y∈RN

(
u(y) +

1

2ε
|x− y|2

)
.

We notice that

(3.13) uε(x) > u(x) > uε(x).

Moreover, uε is semiconvex and is a subsolution of (3.7) in B2−ρ and uε is semiconcave and is a super-
solution of (3.8) in B2−ρ, for some ρ = ρ(ε) > 0, see e.g. Proposition III.2 in [Awa91].
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Since (3.12) does not hold true, there exists α ∈ (0, 2s) such that, for any L > 0 and ε > 0,

sup
(x1,x2)∈R2N

uε(x1)− uε(x2)− L|x1 − x2|α − ψ(x1) > sup
(x1,x2)∈R2N

u(x1)− u(x2)− L|x1 − x2|α − ψ(x1) > 0,

where we also used (3.13). Then, for any L > 0 and ε > 0, the supremum on R2N of the function

(3.14) uε(x1)− uε(x2)− L|x1 − x2|α − ψ(x1),

is positive and is attained at some point (x1, x2) ∈ R2N . Moreover, for ε small enough, we have
that x1 6= x2. We remark that

(3.15) |x1 − x2| 6
(

2‖u‖L∞(RN )

L

) 1
α

.

Using that φ > 1 in RN \B3/4 and (3.11), we see that for all x1 ∈ RN \B3/4,

uε(x1)− uε(x2)− L|x1 − x2|α − ψ(x1) 6 uε(x1)− uε(x2)− 2‖u‖L∞(RN ) 6 oε(1),

where oε(1)→ 0 as ε→ 0. Thus me must have x1 ∈ B3/4 for ε small enough, and by (3.15), if

L > 16‖u‖L∞(RN ),

we have that

(3.16) x1, x2 ∈ B7/8.

The function in (3.14) is semiconvex, hence, by Aleksandrov’s Theorem, twice differentiable almost
everywhere. Let us now introduce a perturbation of it, for which we can choose maximum points of
twice differentiability.

First we transform (x1, x2) into a strict maximum point. In order to do that, we consider a smooth
function h : R+ → R, with compact support, such that h(0) = 0 and h(t) > 0 for 0 < t < 1, we fix a
small β > 0 and we set

θ(x1, x2) := βh(|x1 − x1|2) + βh(|x2 − x2|2).

Clearly, (x1, x2) is a strict maximum point of uε(x1)− uε(x2)− L|x1 − x2|α − ψ(x1)− θ(x1, x2).
Next we consider a smooth function τ : RN → R such that τ(x) = 1 if |x| 6 1/2 and τ(x) = 0 for

|x| > 1. By Jensen’s Lemma, see e.g. Lemma A.3 of [CIL92], for every small and positive δ, there exist
qδ1, q

δ
2 ∈ RN with |qδ1| , |qδ2| 6 δ, such that the function

(3.17) Φ(x1, x2) := uε(x1)− uε(x2)− L|x1 − x2|α − ϕ1(x1)− ϕ2(x2),

where

ϕ1(x1) := ψ(x1) + βh(|x1 − x1|2) + τ(x1 − x1)qδ1 · x1,

and ϕ2(x2) := βh(|x2 − x2|2) + τ(x2 − x2)qδ2 · x2,

has a maximum at (xδ1, x
δ
2), with

(3.18) |xδ1 − x1|, |xδ2 − x2| 6 δ

and uε(x1)−uε(x2) is twice differentiable at (xδ1, x
δ
2). In particular, uε is twice differentiable with respect

to x1 at xδ1 and uε is twice differentiable with respect to x2 at xδ2.
We remark that the function τ has been introduced to make L2,rϕ1 and L2,rϕ2 finite. Also, for δ

small enough, by (3.16) and (3.18), we have that

(3.19) xδ1, x
δ
2 ∈ B1−ρ,

and that xδ1 6= xδ2. In particular, this will allow us to compute the derivatives of the function in (3.17).
Since (xδ1, x

δ
2) is a maximum point for Φ, we have

∇uε(xδ1) = ∇ϕ1(xδ1) + αL|xδ1 − xδ2|α−2(xδ1 − xδ2)

and ∇uε(xδ2) = −∇ϕ2(xδ2) + αL|xδ1 − xδ2|α−2(xδ1 − xδ2).
(3.20)
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Moreover the inequalities

Φ(xδ1 + z, xδ2) 6 Φ(xδ1, x
δ
2),

Φ(xδ1, x
δ
2 + z) 6 Φ(xδ1, x

δ
2)

and Φ(xδ1 + z, xδ2 + z) 6 Φ(xδ1, x
δ
2),

for any z ∈ RN , together with (3.20), give respectively:

uε(xδ1 + z)− uε(xδ1)−∇uε(xδ1) · z
6 ϕ1(xδ1 + z)− ϕ1(xδ1)−∇ϕ1(xδ1) · z

+ L|xδ1 + z − xδ2|α − L|xδ1 − xδ2|α − αL|xδ1 − xδ2|α−2(xδ1 − xδ2) · z,
(3.21)

and

− (uε(x
δ
2 + z)− uε(xδ2)−∇uε(xδ2) · z)

6 ϕ2(xδ2 + z)− ϕ2(xδ2)−∇ϕ2(xδ2) · z
+ L|xδ1 − z − xδ2|α − L|xδ1 − xδ2|α + αL|xδ1 − xδ2|α−2(xδ1 − xδ2) · z,

(3.22)

and, for any r > 0,

uε(xδ1 + z)− uε(xδ1)− χBr(z)∇uε(xδ1) · z
6 uε(x

δ
2 + z)− uε(xδ2)− χBr(z)∇uε(xδ2) · z

+ ϕ1(xδ1 + z)− ϕ1(xδ1)− χBr(z)∇ϕ1(xδ1) · z
+ ϕ2(xδ2 + z)− ϕ2(xδ2)− χBr(z)∇ϕ2(xδ2) · z.

(3.23)

The last inequality in particular implies that

(3.24) L2,ruε(xδ1) 6L2,ruε(x
δ
2) + L2,rϕ1(xδ1) + L2,rϕ2(xδ2),

and

(3.25) D2uε(xδ1)−D2uε(x
δ
2) 6 C(β + ‖u‖L∞(RN ))IN ,

where IN is the N × N identity matrix. Here and henceforth C denotes various positive constants
independent of the parameters.

Now, using that uε and uε are respectively subsolution of (3.7) and supersolution of (3.8) in B1−ρ,
and recalling (3.10) and (3.19), we have that

(3.26) −η∆uε(xδ1) + L1,ruε(xδ1) + L2,ruε(xδ1) + f1 6 0

and

(3.27) −η∆uε(x
δ
2) + L1,ruε(x

δ
2) + L2,ruε(x

δ
2) + f2 > 0.

Thus, by subtracting (3.27) to (3.26) and using (3.24) and (3.25), we obtain

(3.28) L1,ruε(xδ1)−L1,ruε(x
δ
2) + f1 − f2 − C(β + ‖u‖L∞(RN )) 6 0.

Next, let us estimate the term L1,ruε(xδ1)−L1,ruε(x
δ
2) and show that it contains a main negative part.

For 0 < ν0 < 1, let us denote by Ar the cone

Ar :=
{
z ∈ Br , |z · (xδ1 − xδ2)| > ν0|z||xδ1 − xδ2|

}
.
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Then

L1,ruε(xδ1)−L1,ruε(x
δ
2)

= −
∫
Ar

[
uε(xδ1 + z)− uε(xδ1)−∇uε(xδ1) · z − (uε(x

δ
2 + z)− uε(xδ2)−∇uε(xδ2) · z)

]
K(z) dz

−
∫
Br\Ar

[
uε(xδ1 + z)− uε(xδ1)−∇uε(xδ1) · z − (uε(x

δ
2 + z)− uε(xδ2)−∇uε(xδ2) · z)

]
K(z) dz

=: − T1 − T2.

(3.29)

From (3.23) we have

(3.30) T2 6 C(β + ‖u‖L∞(RN )).

Let us estimate T1. Using (3.21) and (3.22), and successively making the change of variable z → −z,
we get the following estimate of T1:

T1 6
∫
Ar

[
L|xδ1 + z − xδ2|α − L|xδ1 − xδ2|α − αL|xδ1 − xδ2|α−2(xδ1 − xδ2) · z

]
K(z) dz + C(β + ‖u‖L∞(RN ))

+

∫
Ar

[
L|xδ1 − z − xδ2|α − L|xδ1 − xδ2|α + αL|xδ1 − xδ2|α−2(xδ1 − xδ2) · z

]
K(z) dz

= 2

∫
Ar

[
L|xδ1 + z − xδ2|α − L|xδ1 − xδ2|α − αL|xδ1 − xδ2|α−2(xδ1 − xδ2) · z

]
K(z) dz + C(β + ‖u‖L∞(RN ))

6 αL

∫
Ar

sup
{|t|61}

{
|xδ1 − xδ2 + tz|α−4

(
|xδ1 − xδ2 + tz|2|z|2 − (2− α)[(xδ1 − xδ2 + tz) · z]2

)}
K(z) dz

+ C(β + ‖u‖L∞(RN )).

Let us fix r := σ|xδ1 − xδ2|, for some σ > 0. Then, for z ∈ Ar,
|xδ1 − xδ2 + tz| 6 (1 + σ)|xδ1 − xδ2|

and |(xδ1 − xδ2 + tz) · z| > |(xδ1 − xδ2) · z| − |z|2 > (ν0 − σ) |xδ1 − xδ2||z|.
Let us choose 0 < σ < ν0 < 1 such that

C0 := −(1 + σ)2 + (2− α)(ν0 − σ)2 > 0,

then by (1.4),

T1 6 −CC0L|xδ1 − xδ2|α−2

∫
Ar

|z|2K(z) dz + C(β + ‖u‖L∞(RN ))

6 −CC0L|xδ1 − xδ2|α−2r2−2s + C(β + ‖u‖L∞(RN ))

6 −CC0L|xδ1 − xδ2|α−2s + C(β + ‖u‖L∞(RN )).

(3.31)

From (3.28), (3.29), (3.30) and (3.31), we obtain

CC0L|xδ1 − xδ2|α−2s − C(β + ‖u‖L∞(RN )) + f1 − f2 6 0.

Letting δ go to 0, the last inequality and (3.18) yield

CC0L|x1 − x2|α−2s 6 C(β + ‖u‖L∞(RN )) + f2 − f1.

Thus, since α− 2s < 0, using (3.15) and letting β go to 0, we finally obtain

L 6 C
(
f2 − f1 + ‖u‖L∞(RN )

) α
2s ‖u‖1− α

2s

L∞(RN )
.

Since L was chosen as big as we wish, we get a contradiction for L > C
(
f2 − f1 + ‖u‖L∞(RN )

) α
2s ‖u‖1− α

2s

L∞(RN )
.

This proves (3.9). �
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With the aid of Lemma 3.2, we can prove the following regularity result (with uniform bounds):

Lemma 3.3. Let T > 1, η ∈ (0, 1), ρ > 0, ζ ∈Z. Let Q ∈ L∞(R) be a solution of

−ηQ̈(x) + L(Q)(x) + a(x)W ′(Q(x)) = 0, for any x ∈ (−4T, 4T ).

Suppose that

(3.32) Q(x) ∈ Bρ(ζ) for any x ∈ (−4T, 4T ).

Then, for any α < min{1, 2s},

(3.33) [Q]C0,α(−T,T ) 6 CT−α
(
‖Q‖L∞(R) + T 2sρ

) α
2s ρ1− α

2s ,

for some C > 0 independent of η and depending on structural constants.

Proof. Up to a translation, we assume that ζ = 0, hence (3.32) becomes

(3.34) |Q(x)| 6 ρ, for any x ∈ (−4T, 4T ).

We let τo ∈ C∞0 ([−4, 4], [0, 1]) be such that τo(x) = 1 for any x ∈ [−3, 3]. We define τ(x) := τo(x/T )
and u(x) := τ(x)Q(x). Notice that, by (3.34),

(3.35) |u(x)| 6 ρ for any x ∈ R.

Arguing as in Lemma 4.1 in [DPV17], we see that u is solution of

−ηü+ L(u) = f in (−2T, 2T ),

for some function f satisfying

‖f‖L∞(−2T,2T ) 6
C‖Q‖L∞(R)

T 2s
+ Cρ,

with C > 0 independent of η. Let v(x) := u(Tx), then v is a solution of

−ηT 2(s−1)v̈ + L(v) = T 2sf in (−2, 2).

Therefore, by Lemma 3.2 and (3.35), we have that, for any α < min{1, 2s},

[v]C0,α(−1,1) 6 C
(
‖Q‖L∞(R) + T 2sρ

) α
2s ρ1− α

2s .

Scaling back we get (3.33). �

4. Energy estimates

Goal of this section is to provide suitable integral estimates, with the aim of bounding the energy
from below (this bound is crucial to apply minimization methods in the variational arguments). To
start with, we provide a bound on the “mixed term” of the energy functional, as defined in (2.1).

Lemma 4.1. Let v ∈ L∞(R),

S−(v) :=
{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) 6 δ0

}
and S+(v) :=

{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) > δ0

}
.

Then ∣∣BR,R(v,Q]
ζ1,ζ2

)
∣∣ 6 const ‖Q]

ζ1,ζ2
‖C1(R)

((
|S+(v)|

1−2s
2 + 1

)
[v]K,R×R +

√∫
S−(v)

|v(x)|2 dx

)
.
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Proof. We fix L > 2, to be chosen conveniently at the end of the proof and we set I− := (−∞,−L),

I+ := (L,+∞) and J := [−L,L], and we notice that BI−,I−(v,Q]
ζ1,ζ2

) = BI+,I+(v,Q]
ζ1,ζ2

) = 0, sinceQ]
ζ1,ζ2

is constant on I− ∪ I+. Using this and (2.3), we see that

(4.1) BR,R(v,Q]
ζ1,ζ2

) = BJ,J(v,Q]
ζ1,ζ2

) + 2BJ,I−(v,Q]
ζ1,ζ2

) + 2BI−,I+(v,Q]
ζ1,ζ2

) + 2BJ,I+(v,Q]
ζ1,ζ2

).

Moreover, if x ∈ [−L, 1] and y ∈ (L,+∞) we have that

|x− y| = y − x > y

2
+
L

2
− 1 >

y

2
,

and so, recalling (1.4), we have that∫∫
[−L,1]×(L,+∞)

∣∣(Q]
ζ1,ζ2

)(x)− ζ2

∣∣2K(x− y) dx dy

6 const ‖Q]
ζ1,ζ2
‖2
L∞(R)

∫∫
[−L,1]×(L,+∞)

y−1−2s dx dy

6 const ‖Q]
ζ1,ζ2
‖2
L∞(R) L

1−2s.

Therefore, by the Cauchy-Schwarz Inequality we find that∣∣BJ,I+(v,Q]
ζ1,ζ2

)
∣∣

=

∣∣∣∣∫∫
[−L,L]×(L,+∞)

(
v(x)− v(y)

)(
(Q]

ζ1,ζ2
)(x)− ζ2

)
K(x− y) dx dy

∣∣∣∣
6

√∫∫
[−L,1]×(L,+∞)

∣∣v(x)− v(y)
∣∣2K(x− y) dx dy

×
√∫∫

[−L,1]×(L,+∞)

∣∣(Q]
ζ1,ζ2

)(x)− ζ2

∣∣2K(x− y) dx dy

6 const ‖Q]
ζ1,ζ2
‖L∞(R) L

1−2s
2 [v]K,R×R.

(4.2)

Similarly, it holds that

(4.3)
∣∣BJ,I−(v,Q]

ζ1,ζ2
)
∣∣ 6 const ‖Q]

ζ1,ζ2
‖L∞(R) L

1−2s
2 [v]K,R×R.

Also, we have that

∣∣BI−,I+(v,Q]
ζ1,ζ2

)
∣∣ =

∣∣∣∣∫∫
(−∞,−L)×(L,+∞)

(
v(x)− v(y)

)(
ζ1 − ζ2

)
K(x− y) dx dy

∣∣∣∣
6 const ‖Q]

ζ1,ζ2
‖L∞(R)

∫∫
(−∞,−L)×(L,+∞)

(
|v(x)|+ |v(y)|

)
(y − x)−1−2s dx dy

6 const ‖Q]
ζ1,ζ2
‖L∞(R)

[∫
(−∞,−L)

|v(x)|
(L− x)2s

dx+

∫
(L,+∞)

|v(y)|
(y + L)2s

dy

]
.

(4.4)

In addition, using the Cauchy-Schwarz Inequality we see that∫
S−(v)∩(L,+∞)

|v(y)|
(y + L)2s

dy 6

√∫
S−(v)

|v(y)|2 dy
∫

(L,+∞)

dy

(y + L)4s

6
const

L
4s−1

2

√∫
S−(v)

|v(x)|2 dx.

(4.5)

We stress that we have used condition (1.5) here.
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Also, by using the Hölder inequality with exponents 2∗s := 2
1−2s

and 2
1+2s

, and then the fractional
Sobolev Inequality (see e.g. Appendix A), we have∫

S+(v)∩(L,+∞)

|v(y)|
(y + L)2s

dy 6

(∫
S+(v)∩(L,+∞)

|v(y)|2∗s dy
) 1

2∗s

(∫
S+(v)∩(L,+∞)

dy

(y + L)
4s

1+2s

) 1+2s
2

6
const

L2s
‖v‖L2∗s (R) |S+(v) ∩ (L,+∞)|

1+2s
2

6
const

L2s
[v]Hs(R) |S+(v) ∩ (L,+∞)|

1+2s
2

6
const

L2s
[v]K,R×R |S+(v)|

1+2s
2 .

This and (4.5) imply that

(4.6)

∫
(L,+∞)

|v(y)|
(y + L)2s

dy 6
const

L
4s−1

2

√∫
S−(v)

|v(x)|2 dx+ const [v]K,R×R
|S+(v)| 1+2s

2

L2s
.

Similarly, it holds that

(4.7)

∫
(−∞,−L)

|v(x)|
(x+ L)2s

dx 6
const

L
4s−1

2

√∫
S−(v)

|v(x)|2 dx+ const [v]K,R×R
|S+(v)| 1+2s

2

L2s
.

Thus, we plug (4.6) and (4.7) into (4.4), and we conclude that
(4.8)∣∣BI−,I+(v,Q]

ζ1,ζ2
)
∣∣ 6 const ‖Q]

ζ1,ζ2
‖L∞(R)

(
1

L
4s−1

2

√∫
S−(v)

|v(x)|2 dx+ const [v]K,R×R
|S+(v)| 1+2s

2

L2s

)
.

Furthermore, by the Cauchy-Schwarz Inequality and (1.15), we have that∣∣BJ,J(v,Q]
ζ1,ζ2

)
∣∣

6

√∫∫
J×J

∣∣v(x)− v(y)
∣∣2K(x− y) dx dy

∫∫
J×J

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

6 const [v]K,R×R

√∫∫
J×J

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy.

(4.9)

Now, using that Q]
ζ1,ζ2

(x) = ζ1 for any x ∈ (−∞,−1) and Q]
ζ1,ζ2

(x) = ζ2 for any x ∈ (1,+∞), we have
that ∫∫

J×J

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

=

∫ 2

−2

∫ 2

−2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

+ 2

∫ −2

−L

∫ 2

−2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

+ 2

∫ −2

−L

∫ L

2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

+ 2

∫ 2

−2

∫ L

2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy.
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We estimates the integrals in the right-hand side of the previous equality as follows.∫ −2

−L

∫ 2

−2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

=

∫ −2

−L

∫ 2

−1

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy

6 const ‖Q]
ζ1,ζ2
‖2
L∞(R)L

−2s.

Similarly, ∫ 2

−2

∫ L

2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy 6 const ‖Q]

ζ1,ζ2
‖2
L∞(R)L

−2s,

and ∫ −2

−L

∫ L

2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy 6 const ‖Q]

ζ1,ζ2
‖2
L∞(R)L

1−2s.

Therefore, using in addition that∫ 2

−2

∫ 2

−2

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy 6 const ‖Q]

ζ1,ζ2
‖2
C1(R),

we infer that ∫∫
J×J

∣∣(Q]
ζ1,ζ2

)(x)− (Q]
ζ1,ζ2

)(y)
∣∣2K(x− y) dx dy 6 const ‖Q]

ζ1,ζ2
‖2
C1(R)L

1−2s.(4.10)

From (4.9) and (4.10) we obtain∣∣BJ,J(v,Q]
ζ1,ζ2

)
∣∣ 6 const ‖Q]

ζ1,ζ2
‖C1(R)[v]K,R×RL

1−2s
2 .(4.11)

Now, we insert (4.2), (4.3), (4.8) and (4.11) into (4.1) and we obtain∣∣BR,R(v,Q]
ζ1,ζ2

)
∣∣

6 const ‖Q]
ζ1,ζ2
‖C1(R)

(
L

1−2s
2 [v]K,R×R +

1

L
4s−1

2

√∫
S−(v)

|v(x)|2 dx+ [v]K,R×R
|S+(v)| 1+2s

2

L2s

)
.

Therefore, choosing L := 2 + |S+(v)| we obtain the desired result. �

Now, we provide a lower bound for the potential energy.

Lemma 4.2. Let v ∈ L∞(R),

S−(v) :=
{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) 6 δ0

}
and S+(v) :=

{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) > δ0

}
.

Then ∫
(−∞,−1)∪(1,+∞)

W
(
Q]
ζ1,ζ2

(x) + v(x)
)
dx > const

∫
S−(v)

∣∣v(x)
∣∣2 dx+ inf

dist(r,Z)>δ0
W (r)

∣∣S+(v)
∣∣.
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Proof. Notice that if x ∈ (−∞,−1) ∪ (1,+∞) then Q]
ζ1,ζ2

(x) ∈ Z and consequently W
(
Q]
ζ1,ζ2

(x) +

v(x)
)

= W
(
v(x)

)
. Therefore, recalling (1.9) we compute that∫

(−∞,−1)∪(1,+∞)

W
(
Q]
ζ1,ζ2

(x) + v(x)
)
dx =

∫
(−∞,−1)∪(1,+∞)

W
(
v(x)

)
dx

=

∫
S−(v)

W
(
v(x)

)
dx+

∫
S+(v)

W
(
v(x)

)
dx

> const

∫
S−(v)

∣∣v(x)
∣∣2 dx+ inf

dist(r,Z)>δ0
W (r)

∣∣S+(v)
∣∣,

as desired. �

Combining Lemmata 4.1 and 4.2 we obtain:

Corollary 4.3. Let v ∈ L∞(R),

S−(v) :=
{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) 6 δ0

}
and S+(v) :=

{
x ∈ R \ [−1, 1] s.t. dist(v(x),Z) > δ0

}
.

Assume that

(4.12) |S+(v)| < +∞.

Then, there exist κ1, κ2 > 0, possibly depending on ‖Q]
ζ1,ζ2
‖C1(R) and on structural constants, such that

BR,R(v,Q]
ζ1,ζ2

) +
1

2

∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + v(x)
)
dx

> κ1

(∫
S−(v)

∣∣v(x)
∣∣2 dx+

∣∣S+(v)
∣∣)− κ2

(
[v]

2
1+2s

K,R×R + 1

)
.

Proof. We fix ε > 0, to be chosen conveniently small and we denote by Cε positive quantities, possibly
varying from line to line and possibly depending on ε, on ‖Q]

ζ1,ζ2
‖C1(R) and on structural constants.

By the Cauchy-Schwarz Inequality we have that

(4.13) const ‖Q]
ζ1,ζ2
‖C1(R)

√∫
S−(v)

|v(x)|2 dx 6 Cε + ε

∫
S−(v)

|v(x)|2 dx.

Also, by Young’s Inequality with exponents 2
1−2s

and 2
1+2s

, we see that

(4.14) const ‖Q]
ζ1,ζ2
‖C1(R) |S+(v)|

1−2s
2 [v]K,R×R 6 ε |S+(v)|+ Cε [v]

2
1+2s

K,R×R.

As a consequence, exploiting Lemma 4.1 and the estimates in (4.13) and (4.14), we obtain that∣∣BR,R(v,Q]
ζ1,ζ2

)
∣∣ 6 ε

(∫
S−(v)

|v(x)|2 dx+ |S+(v)|
)

+ Cε

(
[v]

2
1+2s

K,R×R + [v]K,R×R + 1

)
6 ε

(∫
S−(v)

|v(x)|2 dx+ |S+(v)|
)

+ Cε

(
[v]

2
1+2s

K,R×R + 1

)
.

From this and Lemma 4.2 we deduce that

BR,R(v,Q]
ζ1,ζ2

) +

∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + v(x)
)
dx

> ( const − ε)
∫
S−(v)

∣∣v(x)
∣∣2 dx+

(
const inf

dist(r,Z)>δ0
W (r)− ε

) ∣∣S+(v)
∣∣− Cε ([v]

2
1+2s

K,R×R + 1

)
>

1

2

(
const

∫
S−(v)

∣∣v(x)
∣∣2 dx+ const inf

dist(r,Z)>δ0
W (r)

∣∣S+(v)
∣∣)− Cε ([v]

2
1+2s

K,R×R + 1

)
,
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as long as ε is taken suitably small. �

5. Variational methods and constrained minimization for a perturbed problem

Fixed ζ1, ζ2 ∈Z and r ∈ (0, min{δ0, r0}] (where δ0 and r0 are given by (1.4) and (1.9), respectively),
we construct constrained minimizers for our variational problems. To this aim, we take b1 6 −1
and b2 > 1 and consider φ and ψ solutions to

(5.1)


−ηφ̈+ Lφ = C0 in (b1 − τ, b2 + τ),

φ = ζ1 + r in (−∞, b1 − τ ],

φ = ζ2 + r in [b2 + τ,+∞),

and

(5.2)


−ηψ̈ + Lψ = −C0 in (b1 − τ, b2 + τ),

ψ = ζ1 − r in (−∞, b1 − τ ],

ψ = ζ2 − r in [b2 + τ,+∞),

where C0 := ‖aW ′‖L∞(R) and τ ∈ (0, 1). It is known that solutions to (5.1) and (5.2) with η = 0 grow
like ds(x) plus the boundary data away from the boundary of (b1− τ, b2 + τ), where d(x) is the distance
function to the boundary of (b1− τ, b2 + τ), see [ROS14]. Thus, by stability of viscosity solutions, there
exist c, C > 0 such that, for τ small enough,

c(x− b1 + τ)s + oη(1) 6 φ(x)− ζ1 − r 6 C(x− b1 + τ)s + oη(1) for x ∈ [b1 − τ, b1],

c(b2 + τ − x)s + oη(1) 6 φ(x)− ζ2 − r 6 C(b2 + τ − x)s + oη(1) for x ∈ [b2, b2 + τ ],

−C(x− b1 + τ)s + oη(1) 6 ψ(x)− ζ1 + r 6 −c(x− b1 + τ)s + oη(1) for x ∈ [b1 − τ, b1],

−C(b2 + τ − x)s + oη(1) 6 ψ(x)− ζ2 + r 6 −c(b2 + τ − x)s + oη(1) for x ∈ [b2, b2 + τ ],

where oη(1)→ 0 as η → 0. In particular, for small τ ,

(5.3)



|φ(x)− ζ1 − r| 6
r

4
for x ∈ [b1 − τ, b1],

|φ(x)− ζ2 − r| 6
r

4
for x ∈ [b2, b2 + τ ],

|ψ(x)− ζ1 + r| 6 r

4
for x ∈ [b1 − τ, b1],

|ψ(x)− ζ2 + r| 6 r

4
for x ∈ [b2, b2 + τ ].

Next, consider smooth functions Φ : R→ R and Ψ : R→ R such that

(5.4)



Φ(x) = φ(x) for x ∈ (−∞, b1 − 2τ ] ∪ [b2 + 2τ,+∞),

ζ1 +
3

4
r 6 Φ(x) 6 φ(x) 6 ζ1 +

5

4
r for x ∈ (b1 − 2τ, b1],

Φ(x) > φ(x) for x ∈ (b1, b2),

ζ2 +
3

4
r 6 Φ(x) 6 φ(x) 6 ζ2 +

5

4
r for [b2, b2 + 2τ)

and

(5.5)



Ψ(x) = ψ(x) for all x ∈ (−∞, b1 − 2τ ] ∪ [b2 + 2τ,+∞),

ζ1 −
5

4
r 6 ψ(x) 6 Ψ(x) 6 ζ1 −

3

4
r for all x ∈ (b1 − 2τ, b1],

Ψ(x) 6 ψ(x) for all x ∈ (b1, b2),

ζ2 −
5

4
r 6 ψ(x) 6 Ψ(x) 6 ζ2 −

3

4
r for all [b2, b2 + 2τ).
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With this, we can define the set

Γ(b1, b2) :=
{
Q : R→ R s.t. Q−Q]

ζ1,ζ2
∈ H1(R),

Ψ(x) 6 Q(x) 6 Φ(x) for all x ∈ (−∞, b1] ∪ [b2,+∞)
}
.

(5.6)

Given η ∈ (0, 1], we also consider the energy functional

Iη(Q) :=
η

2

∫
R
|Q̇(x)|2 dx+

∫
R
a(x)W

(
Q(x)

)
dx

+
1

4

∫∫
R×R

(∣∣Q(x)−Q(y)
∣∣2 − ∣∣(Q]

ζ1,ζ2
)(x)− (Q]

ζ1,ζ2
)(y)

∣∣2)K(x− y) dx dy.

(5.7)

Then, we can construct a constrained minimizer for Iη in Γ(b1, b2) (later on, in Proposition 9.2, we will
take b1 and b2 conveniently separated, in order to employ condition (1.12), so to obtain an unconstrained
minimizer, and then, in Section 10, we will send η → 0 in order to obtain a true solution, as claimed in
Theorem 1.1).

Lemma 5.1. There exists Qη ∈ Γ(b1, b2) such that

(5.8) Iη(Qη) 6 Iη(Q) for all Q ∈ Γ(b1, b2).

Also, letting vη := Qη −Q]
ζ1,ζ2

, it holds that

[vη]
2
H1(R) 6

κ

η
,(5.9)

[vη]K,R×R 6 κ,(5.10)

‖vη‖L∞(R) 6
κ

η
,(5.11)

‖vη‖L2(R) 6 κ
(
1 + ‖vη‖2

L∞(R)

)
,(5.12)

and ER2(Qη) > −κ,(5.13)

for some κ > 0, which possibly depends on Q]
ζ1,ζ2

and on structural constants.

Proof. We take a minimizing sequence Qj ∈ Γ(b1, b2) for the functional Iη, and we let vj := Qj−Q]
ζ1,ζ2
∈

H1(R). In particular, we have that

lim
x→±∞

vj(x) = 0,

for any j ∈ N. From this and (1.7), we have that the set

S+(vj) :=
{
x ∈ R \ [−1, 1] s.t. dist(vj(x),Z) > δ0

}
is bounded. This means that condition (4.12) is satisfied for any fixed j ∈ N and, as a consequence, by
exploiting Corollary 4.3 we obtain that

BR,R(vj, Q
]
ζ1,ζ2

) +
1

2

∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + vj(x)
)
dx

> κ

(∫
S−(vj)

∣∣vj(x)
∣∣2 dx+

∣∣S+(vj)
∣∣)− κ ([vj]

2
1+2s

K,R×R + 1

)
,

(5.14)

for some κ, possibly varying from line to line and possibly depending on Q]
ζ1,ζ2

and on structural
constants, where

S−(vj) :=
{
x ∈ R \ [−1, 1] s.t. dist(vj(x),Z) 6 δ0

}
.
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We also define Jη(v) := Iη(Q
]
ζ1,ζ2

+ v). In this way, the sequence vj is minimizing for Jη, and

Jη(v) =
η

2

∫
R

(
|Q̇]

ζ1,ζ2
(x)|2 + |v̇(x)|2 + 2Q̇]

ζ1,ζ2
(x)v̇(x)

)
dx+

∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + v(x)
)
dx

+
1

4

∫∫
R×R

∣∣v(x)− v(y)
∣∣2K(x− y) dx dy +

1

2
BR,R(v,Q]

ζ1,ζ2
).

(5.15)

Since vj is minimizing and the zero function is an admissible competitor for Jη, we can also suppose
that

(5.16) Jη(vj) 6 Jη(0) + 1 6
1

2

∫
R
|Q̇]

ζ1,ζ2
(x)|2 dx+

∫
R
aW

(
Q]
ζ1,ζ2

(x)
)
dx+ 1 6 κ.

In addition, by Cauchy-Schwarz Inequality,

2
∣∣Q̇]

ζ1,ζ2
(x) · v̇j(x)

∣∣ 6 4
∣∣Q̇]

ζ1,ζ2
(x)
∣∣2 +

1

4

∣∣v̇j(x)
∣∣2.

Combining this estimate with formulas (5.14), (5.15) and (5.16), we conclude that

κ >
3η

8

∫
R
|v̇j(x)|2 dx+

3

4

∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + vj(x)
)
dx

+
1

4
[vj]

2
K,R×R − κ [vj]

2
1+2s

K,R×R

+ κ

(∫
S−(vj)

∣∣vj(x)
∣∣2 dx+

∣∣S+(vj)
∣∣) .

(5.17)

In particular,

κ > [vj]
2
K,R×R − κ[vj]

2
1+2s

K,R×R,

which implies that

(5.18) [vj]K,R×R 6 κ.

This and the Sobolev Inequality (see e.g. Appendix A) imply that

‖vj‖L2∗s (R) 6 κ,

with 2∗s := 2
1−2s

> 2. Therefore, for any interval I ⊂ R of length 1, we have that

(5.19) ‖vj‖L2∗s (I) 6 κ.

Furthermore, exploiting (5.17) once more, we see that

(5.20) η

∫
R
|v̇j(x)|2 dx 6 κ− [vj]

2
K,R×R + κ[vj]

2
1+2s

K,R×R 6 κ.

Now we prove that

(5.21) sup
x∈R
|Qj(x)− ζ1| 6

κ

η
.

For this, we suppose that, for some x̄ ∈ R, it holds that

(5.22) Qj(x̄) > ζ1 + ν,

with ν > 1. Our goal is to bound ν. To this end, we use formulas (5.19) and (5.20) to see that

‖vj‖2
H1(I) 6

κ

η
,

for any interval I of length 1, and, consequently, by the classical Sobolev Embedding Theorem,

[vj]
2

C0, 12 (I)
6
κ

η
.
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and so

(5.23) [Qj]
2

C0, 12 (I)
6
κ

η
.

Moreover, from (5.22), we know that there exist ν ′ ∈ N with ν ′ > const ν and points x1, . . . , xν′ ∈ R
for which dist(Qj(xm),Z) > 1

4
, for all m ∈ {1, . . . , ν ′}. This and (5.23) imply that dist(Qj(x),Z) > 1

8

for all m ∈ {1, . . . , ν ′} and all x ∈ (xm − κη, xm + κη). Thereupon, we obtain that∫
R
a(x)W

(
Q]
ζ1,ζ2

(x) + vj(x)
)
dx =

∫
R
a(x)W

(
Qj(x)

)
dx > κν ′η > κνη.

This and (5.17) imply that ν 6 κ/η.
This argument shows that Qj(x) 6 ζ1 + κ

η
. Other estimates can be obtained in a similar way, thus

proving (5.21).
From (5.21), it follows that

(5.24) ‖vj‖L∞(R) 6
κ

η
.

Now, we observe that∫
R
|vj(x)|2 dx =

∫
S−(vj)

|vj(x)|2 dx+

∫
S+(vj)

|vj(x)|2 dx

6
∫
S−(vj)

|vj(x)|2 dx+ ‖vj‖2
L∞(R) |S+(vj)|

6
(
1 + ‖vj‖2

L∞(R)

) (∫
S−(vj)

|vj(x)|2 dx+ |S+(vj)|

)
.

This and (5.17) give that

(5.25)

∫
R
|vj(x)|2 dx 6 κ

(
1 + ‖vj‖2

L∞(R)

)
.

From (5.18) and (5.25), we obtain that, up to a subsequence, vj converges locally uniformly in R and

weakly in the Hilbert space induced by [·]K,R×R to a minimizer vη. We then set Qη := vη +Q]
ζ1,ζ2

and we
obtain (5.8). Also, the claim in (5.9) follows by taking the limit in (5.20), as well as the claim in (5.10)
follows by taking the limit in (5.18). Similarly, the claim in (5.11) follows from (5.24) and the claim
in (5.12) follows from (5.25). Finally, (5.13) follows by taking the limit in (5.14) and by (5.10). �

Now, by virtue of the uniform bound in Lemma 3.1, we are in the position of improving (5.11)
and (5.12), obtaining uniform estimates in the perturbative parameter η.

Corollary 5.2. In the setting of Lemma 5.1, it holds that

‖vη‖L∞(R) 6 κ,(5.26)

‖vη‖L2(R) 6 κ,(5.27)

and [Qη]
2

C0, 12 (R)
6
κ

η
,(5.28)

for some κ > 0, which possibly depends on Q]
ζ1,ζ2

and on structural constants.

Proof. If x ∈ (b1, b2), the minimizer Qη is unconstrained and we can therefore differentiate the energy
functional Iη, thus obtaining that

−ηQ̈η + aW ′(Qη) + LQη = 0 in (b1, b2).

Moreover, by (5.4) and (5.5), we see that

|Qη(x)− ζ1| 6
5

4
r for all x 6 b1 and |Qη(x)− ζ2| 6

5

4
r for all x > b2.
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In this way, we are in position of using Lemma 3.1 with f(x) := −a(x)W ′(Qη(x)
)
: thus we deduce that

there exists κ, independent of C0, such that ‖Qη‖L∞(R) 6 κ, and therefore

‖vη‖L∞(R) 6 ‖Qη‖L∞(R) + ‖Q]
ζ1,ζ2
‖L∞(R) 6 κ.

This proves (5.26).
The claim in (5.27) follows from (5.12) and (5.26).
Finally, (5.9), (5.26) and the classical Sobolev Theorem yield (5.28). �

Now we define
J∗ := (b1, b2)

and
L :=

{
x ∈ (−∞, b1] ∪ [b2,+∞) s.t. Ψ(x) < Qη(x) < Φ(x)

}
.

Let also

(5.29) F := J∗ ∪ L.
As usual, by taking inner variations, one sees that in the set F the minimization problem is “free” and
so it satisfies an Euler-Lagrange equation, as stated explicitly in the next result:

Lemma 5.3. Let Qη be as in Lemma 5.1. For any x ∈ F , we have that

(5.30) −η Q̈η(x) + LQη(x) + a(x)W ′(Qη(x)) = 0.

Now we define the set

(5.31) Σ :=
{
Q : R→ R s.t. Q−Q]

ζ1,ζ2
∈ H1(R) and Ψ(x) 6 Q(x) 6 Φ(x) for all x ∈ R

}
.

We notice that, differently from the definition of Γ(b1, b2) given in (5.6), we require here that a function Q
belongs to Σ if it satisfies Ψ 6 Q 6 Φ in the whole of R, and not only in (−∞, b1] ∪ [b2,+∞).

As a matter of fact, we prove that the minimizer Qη ∈ Γ(b1, b2), given by Lemma 5.1, is actually a
minimizer of Iη in Σ:

Lemma 5.4. Let Qη be as in Lemma 5.1. Then, we have that Qη ∈ Σ. In particular,

(5.32) inf
Q∈Σ

Iη(Q) = inf
Q∈Γ(b1,b2)

Iη(Q) = Iη(Qη).

Proof. We first prove that Qη belongs to Σ. For this, it is enough to show that

(5.33) Ψ(x) 6 Qη(x) 6 Φ(x) for any x ∈ (b1, b2).

To check this, we observe that, by Lemma 5.3, Qη is solution of

−η Q̈η(x) + LQη(x) + a(x)W ′(Qη(x)) = 0 for any x ∈ (b1, b2).

In addition, since Qη ∈ Γ(b1, b2), recalling (5.4) and (5.6), we see that

(5.34) Qη(x) 6 Φ(x) 6 φ(x) for any x ∈ (−∞, b1] ∪ [b2,+∞).

Thus, using also (5.1) and the Comparison Principle, we conclude that

Qη(x) 6 φ(x) for any x ∈ (b1, b2).

Consequently, making again use of (5.4),

Qη(x) 6 φ(x) 6 Φ(x) for any x ∈ (b1, b2),

which proves the second inequality in (5.33). Similarly, one can check that

Qη(x) > Ψ(x) for any x ∈ (b1, b2),

which completes the proof of (5.33).
Now, since Qη ∈ Σ ⊂ Γ(b1, b2), it holds that

inf
Q∈Σ

Iη(Q) > inf
Q∈Γ(b1,b2)

Iη(Q) = Iη(Qη) > inf
Q∈Σ

Iη(Q),
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which proves (5.32). The proof of Lemma 5.4 is thus complete. �

6. Lewy-Stampacchia estimates and continuity results for a double obstacle
problem

In this section, we prove that constrained minimizers of the perturbed problem are continuous, with
uniform bounds. This estimate is based on a double obstacle problem approach. We follow a technique
introduced by Lewy and Stampacchia in [LS70] and suitably modified in [SV13] to deal with nonlocal
problems. In our situation, differently from the previous literature, we need to take into account the
fact that the problem is constrained by two obstacles. Moreover, our problem is a superposition of a
local and a nonlocal operators and we aim at estimates which are uniform with respect to the local
contribution. The result that suits for our purposes is the following:

Proposition 6.1. Let I be a bounded interval and f ∈ L∞(I). Let u ∈ Σ, with Σ defined as in (5.31),
and assume that

η

∫
R
u̇(x)

(
u̇(x)− v̇(x)

)
dx+

1

2

∫∫
R2

(
u(x)− u(y)

)(
(u− v)(x)− (u− v)(y)

)
K(x− y) dx dy

6
∫
R
f(x) (u− v)(x) dx,

(6.1)

for every v ∈ Σ with v = u in R \ I. Then,
(6.2)

min

{
inf
x∈I
−|Φ̈(x)|+ LΦ(x), inf

x∈I
f(x)

}
6 −ηü(x) + Lu(x) 6 max

{
sup
x∈I
|Ψ̈(x)|+ LΨ(x), sup

x∈I
f(x)

}
in the sense of distributions.

Proof. Let

(6.3) M∗ := max

{
sup
x∈I
|Ψ̈(x)|+ LΨ(x), sup

x∈I
f(x)

}
and

I∗(v) :=
η

2

∫
I

|v̇(x)|2 dx+
1

4

∫∫
QI

∣∣v(x)− v(y)
∣∣2K(x− y) dx dy −M∗

∫
I

v(x) dx,

where QI := (I × I) ∪
(
I × (R \ I)

)
∪
(
(R \ I)× I

)
. We take z∗ to be a minimizer of I∗ in the class of

functions v : R→ R with v(x) 6 u(x) for any x ∈ R and v(x) = u(x) for any x ∈ R\I. The existence of
such minimizer follows by compactness, along the lines given in the proof of Lemma 5.1. In particular,

(6.4) z∗(x) 6 u(x) for any x ∈ R and z∗(x) = u(x) for any x ∈ R \ I.
Moreover, for any ε ∈ [0, 1] and any w : R → R with w(x) 6 u(x) for any x ∈ R and w(x) = u(x)
for any x ∈ R \ I, we have that zε(x) := εw(x) + (1 − ε)z∗(x) is an admissible competitor for z∗ and
consequently I∗(zε) > I∗(z∗), which gives that

0 6
d

dε
I∗(zε)

∣∣∣
ε=0

= η

∫
I

ż∗(x)
(
ẇ(x)− ż∗(x)

)
dx+

1

2

∫∫
QI

(
z∗(x)− z∗(y)

)(
(w − z∗)(x)− (w − z∗)(y)

)
K(x− y) dx dy

−M∗
∫
I

(w − z∗)(x) dx.

(6.5)

We claim that

(6.6) z∗ ∈ Σ.
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To check this, we first use (6.4) to observe that

(6.7) z∗(x) 6 u(x) 6 Φ(x).

Then, we take
w∗(x) := max{z∗(x),Ψ(x)} = z∗(x) +

(
Ψ(x)− z∗(x)

)
+
.

By (6.4), we know that w∗(x) 6 u(x) for any x ∈ R. Also, if x ∈ R \ I, we have that w∗(x) =
max{u(x),Ψ(x)} = u(x). Therefore, we can make use of (6.5) with w := w∗, and so we find that

0 6 η

∫
I∩{Ψ>z∗}

ż∗(x)
(
Ψ̇(x)− ż∗(x)

)
dx

+
1

2

∫∫
QI

(
z∗(x)− z∗(y)

)((
Ψ(x)− z∗(x)

)
+
−
(
Ψ(y)− z∗(y)

)
+

)
K(x− y) dx dy

−M∗
∫
I

(
Ψ(x)− z∗(x)

)
+
dx.

(6.8)

Furthermore, on ∂I we have that z∗ = u > Ψ, hence, from (6.3) and integrating by parts, we see that

η

∫
I∩{Ψ>z∗}

Ψ̇(x)
(
Ψ̇(x)− ż∗(x)

)
dx

+
1

2

∫∫
QI

(
Ψ(x)−Ψ(y)

)((
Ψ(x)− z∗(x)

)
+
−
(
Ψ(y)− z∗(y)

)
+

)
K(x− y) dx dy

−M∗
∫
I

(
Ψ(x)− z∗(x)

)
+
dx

= − η
∫
R

Ψ̈(x)
(
Ψ(x)− z∗(x)

)
+
dx

+

∫∫
R2

(
Ψ(x)−Ψ(y)

)(
Ψ(x)− z∗(x)

)
+
K(x− y) dx dy

−M∗
∫
R

(
Ψ(x)− z∗(x)

)
+
dx

=

∫
R

(
− ηΨ̈(x) + LΨ(x)−M∗

)(
Ψ(x)− z∗(x)

)
+
dx

6 0.

(6.9)

Thus, subtracting (6.8) to (6.9), we conclude that

0 > η

∫
I

(
Ψ̇(x)− ż∗(x)

)(
Ψ̇(x)− ż∗(x)

)
+
dx

+
1

2

∫∫
QI

((
Ψ(x)− z∗(x)

)
−
(
Ψ(y)− z∗(y)

))((
Ψ(x)− z∗(x)

)
+
−
(
Ψ(y)− z∗(y)

)
+

)
K(x− y) dx dy.

(6.10)

The last term in (6.10) is nonnegative (see e.g. page 1115 in [SV13]), therefore we get that

0 >
∫
I

(
Ψ̇(x)− ż∗(x)

)2

+
dx.

This says that Ψ(x) 6 z∗(x) for any x ∈ I (and so for any x ∈ R, due to (6.4)). This and (6.7)
imply (6.6), as desired.

Then, from (6.6) we deduce that both the minimum and the maximum between u and z∗ belong to Σ,
that is

v](x) := min{u(x), z∗(x)} = u(x)−
(
u(x)− z∗(x)

)
+
∈ Σ

and w](x) := max{u(x), z∗(x)} = z∗(x) +
(
u(x)− z∗(x)

)
+
∈ Σ .
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In particular, we can take v := v] in (6.1) and w := w] in (6.5). This gives that

η

∫
R
u̇(x)

(
u̇(x)− ż∗(x)

)
+
dx

+
1

2

∫∫
R2

(
u(x)− u(y)

)((
u(x)− z∗(x)

)
+
−
(
u(y)− z∗(y)

)
+

)
K(x− y) dx dy

6
∫
R
f(x)

(
u(x)− z∗(x)

)
+
dx

(6.11)

and

M∗
∫
I

(
u(x)− z∗(x)

)
+
dx 6 η

∫
I

ż∗(x)
(
u̇(x)− ż∗(x)

)
+
dx

+
1

2

∫∫
QI

(
z∗(x)− z∗(y)

)((
u(x)− z∗(x)

)
+
−
(
u(y)− z∗(y)

)
+

)
K(x− y) dx dy.

(6.12)

Hence, subtracting (6.12) to (6.11) and recalling (6.3), we obtain

0 > η

∫
I

(
u̇(x)− ż∗(x)

)(
u̇(x)− ż∗(x)

)
+
dx

+
1

2

∫∫
QI

((
u(x)− z∗(x)

)
−
(
u(y)− z∗(y)

))((
u(x)− z∗(x)

)
+
−
(
u(y)− z∗(y)

)
+

)
K(x− y) dx dy.

As above, this implies that u 6 z∗. Combining this with (6.4), we obtain that z∗ coincides with u. As
a consequence, taking any function v > 0, supported in I, and defining w := u− v in (6.5),

η

∫
I

u̇(x)v̇(x) dx+
1

2

∫∫
QI

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy 6M∗

∫
I

v(x) dx.

Integrating by parts the latter inequality, we obtain that∫
R

(
− ηü(x) + Lu(x)

)
v(x) dx 6M∗

∫
R
v(x) dx.

By duality, we thus obtain that

−ηü(x) + Lu(x) 6M∗,

in the sense of distributions, which is one of the inequalities in (6.2). The other inequality in (6.2)
follows by similar arguments. �

Using Lemma 3.2, Proposition 6.1 and a convolution method (see e.g. formula (3.2) in [SV14]), we
obtain a useful uniform continuity result for a perturbed problem. The statement that we need for our
purposes is the following:

Corollary 6.2. Let Qη be as in Lemma 5.1 and α ∈ (0, 2s). Then Qη ∈ C0,α(R) and

(6.13) ‖Qη‖C0,α(R) 6 κ,

for some κ > 0, which possibly depends on Q]
ζ1,ζ2

and on structural constants.

Proof. We take vη := Qη − Q]
ζ1,ζ2

, as in Lemma 5.1. By Lemma 5.4, we know that Qη ∈ Σ. We fix an
interval I ⊂ R and take any ξ ∈ Σ. For any ε ∈ (0, 1), let ξε := εξ + (1 − ε)Qη = Qη + ε(ξ − Qη).
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Then ξε ∈ Σ and therefore, by (5.32), we know that

0 6 Iη(ξε)− Iη(Qη)

=
η

2

∫
I

(
|ξ̇ε(x)|2 − |Q̇η(x)|2

)
dx+

∫
I

a(x)
(
W
(
ξε(x)

)
−W

(
Qη(x)

))
dx

+
1

4

∫∫
R×R

(∣∣ξε(x)− ξε(y)
∣∣2 − ∣∣Qη(x)−Qη(y)

∣∣2)K(x− y) dx dy

= εη

∫
I

Q̇η(x) ·
(
ξ̇(x)− Q̇η(x)

)
dx+ ε

∫
I

a(x)W ′(Qη(x)
) (
ξ(x)−Qη(x)

)
dx

+
ε

2

∫∫
R×R

((
Qη(x)−Qη(y)

) (
(ξ −Qη)(x)− (ξ −Qη)(y)

))
K(x− y) dx dy + o(ε).

Thus, dividing this inequality by ε and sending ε ↘ 0, we conclude that Qη satisfies (6.1) with f :=
−aW ′(Qη). Accordingly, by formula (6.2) in Proposition 6.1, we know that

− const 6 −ηQ̈η + LQη 6 const

and therefore

(6.14) −κ 6 −ηv̈η + Lvη 6 κ

in the sense of distributions, for some κ > 0, which possibly depends on Q]
ζ1,ζ2

.

Now we take an even function µ ∈ C∞0 ([−1, 1]) and for any ε ∈ (0, 1) we set µε(x) := ε−1µ(x/ε). We
consider the mollification vη,ε := vη ∗ µε. Notice that, as ε↘ 0, we have that

(6.15) vη,ε converges locally uniformly to vη,

thanks to (5.28). Moreover, we observe that, for any ϕ ∈ C∞0 (R),∣∣∣(vη(x)− vη(y)
)(
ϕ(x)− ϕ(y)

)
µε(z)K(x− y)

∣∣∣
6
(∣∣vη(x)− vη(y)

∣∣2K(x− y) +
∣∣ϕ(x)− ϕ(y)

∣∣2K(x− y)
)
χ[−1,1](z),

which, as a function of (x, y, z) ∈ R×R×R, belongs to L1(R×R×R), thanks to (5.10). This implies
that we can exploit the Dominated Convergence Theorem and obtain that∫∫

R×R

(
vη,ε(x)− vη,ε(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

=

∫∫
R×R

[∫
R

(
vη(x− z)− vη(y − z)

)
µε(z)

(
ϕ(x)− ϕ(y)

)
K(x− y) dz

]
dx dy

=

∫
R

[∫∫
R×R

(
vη(x− z)− vη(y − z)

)
µε(z)

(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

]
dz

=

∫
R

[∫∫
R×R

(
vη(x)− vη(y)

)
µε(z)

(
ϕ(x+ z)− ϕ(y + z)

)
K(x− y) dx dy

]
dz

=

∫∫
R×R

[∫
R

(
vη(x)− vη(y)

)
µε(z)

(
ϕ(x+ z)− ϕ(y + z)

)
K(x− y) dz

]
dx dy

=

∫∫
R×R

[∫
R

(
vη(x)− vη(y)

)
µε(z)

(
ϕ(x− z)− ϕ(y − z)

)
K(x− y) dz

]
dx dy

=

∫∫
R×R

(
vη(x)− vη(y)

)(
ϕε(x)− ϕε(y)

)
K(x− y) dx dy,

(6.16)

where ϕε := ϕ ∗ µε. Similarly, by (5.9), we see that

(6.17)

∫
R
v̇η,ε(x) ϕ̇(x) dx =

∫
R
v̇η(x) ϕ̇ε(x) dx.
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From (6.14), (6.16) and (6.17) we infer that, for any ϕ ∈ C∞0 (R, [0, 1]),∣∣∣∣η ∫
R
v̇η,ε(x) ϕ̇(x) dx+

1

2

∫∫
R×R

(
vη,ε(x)− vη,ε(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

∣∣∣∣
=

∣∣∣∣η ∫
R
v̇η(x) ϕ̇ε(x) dx+

1

2

∫∫
R×R

(
vη(x)− vη(y)

)(
ϕε(x)− ϕε(y)

)
K(x− y) dx dy

∣∣∣∣
6 κ

∣∣∣∣∫
R
ϕε(x) dx

∣∣∣∣ 6 κ

∫
R
ϕ(x) dx.

That is,
−κ 6 −ηv̈η,ε + Lvη,ε 6 κ

in the sense of distributions, and also in the classical and viscosity senses, since vη,ε is smooth. Therefore,
we are in the position of applying Lemma 3.2 to vη,ε and conclude that

[vη,ε]C0,α(R) 6 κ
(
1 + ‖vη,ε‖L∞(R)

) α
2s‖vη,ε‖

1− α
2s

L∞(R) 6 κ
(
1 + ‖vη‖L∞(R)

) α
2s‖vη‖

1− α
2s

L∞(R),

for any α ∈ (0, 2s) (up to freely renaming κ). As a consequence of this and (5.26), we obtain
that [vη,ε]C0,α(R) 6 κ. This and (6.15) imply that [vη]C0,α(R) 6 κ. Using this and (5.26), we obtain
that ‖vη‖C0,α(R) 6 κ, which in turn implies (6.13), as desired. �

7. Clean intervals and clean points

Here we deal with the notions of clean intervals and clean points, which have been introduced in
Section 6 of [DPV17] to perform glueing techniques in the nonlocal setting.

Definition 7.1. Given ρ > 0 and Q : R → R, we say that an interval J ⊆ R is a “clean interval”
for (ρ,Q) if |J | > | log ρ| and there exists ζ ∈Z such that

sup
x∈J
|Q(x)− ζ| 6 ρ.

Definition 7.2. If J is a bounded clean interval for (ρ,Q), the center of J is called a “clean point”
for (ρ,Q).

Here we show that any sufficiently large interval contains a clean interval.

Lemma 7.3. Let J ⊆ R be an interval. Let Qη be as in Lemma 5.1. Then, there exist ρ0 ∈ (0, 1) and

κ1 > 0 depending on Q]
ζ1,ζ2

and on the structural constants such that, if ρ ∈ (0, ρ0) and

(7.1) |J | >
κ1[Qη]

1
α

C0,α(J)

ρ2+ 1
α

| log ρ|,

for α ∈ (0, 2s), then there exists a clean interval for (ρ,Qη) that is contained in J .

Proof. By Corollary 6.2, we know that Q ∈ C0,α(J) for any α ∈ (0, 2s). Without loss of generality we
can assume that [Qη]C0,α(J) > 1. Assume, by contradiction, that

(7.2) J does not contain any clean subinterval.

By (7.1), the interval J contains N disjoint subintervals, say J1, . . . , JN , each of length | log ρ|, with

(7.3) N >
κ1[Qη]

1
α

C0,α(J)

ρ2+ 1
α

− 1,

and, by (7.2), none of the subintervals Ji is clean. Hence, for any i ∈ {1, . . . , N}, there exists pi ∈ Ji
such that Q(pi) stays at distance larger than ρ from Z. Also, letting

`ρ :=

(
ρ

2[Qη]C0,α(J)

) 1
α

,
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we have that, for any x ∈ J ′i := [pi − `ρ, pi + `ρ],

|Qη(x)−Qη(pi)| 6 [Qη]C0,α(J)|x− pi|α 6 [Qη]C0,α(J) `
α
ρ =

ρ

2
.

Accordingly, Qη(x) stays at distance larger than ρ
2

from Z for any x ∈ J ′i and then, by (1.9),

W (Qη(x)) >
c0 ρ

2

4
.

Moreover, for ρ sufficiently small, at least half of the interval J ′i lies in Ji, hence∫
Ji∩J ′i

W (Qη(x)) dx >
c0 ρ

2 `ρ
4

=
κρ2+ 1

α

[Qη]
1
α

C0,α(J)

.

Summing up over i = 1, . . . , N , using that the intervals Ji are disjoint and recalling (1.10), (5.8)
and (5.13), we find that

Iη(Q
]
ζ1,ζ2

) > Iη(Qη)

> −κ+
N∑
i=1

∫
Ji∩J ′i

a(x)W (Qη(x)) dx

> −κ+
Naκρ2+ 1

α

[Qη]
1
α

C0,α(J)

,

which gives

N 6
κ[Qη]

1
α

C0,α(J)

ρ2+ 1
α

.

This is a contradiction with (7.3) for κ1 > κ+ 1 and so it proves the desired result. �

Lemma 7.4. Let Qη be as in Lemma 5.1. Let T > 1 and J := (x0 − 4T, x0 + 4T ) be a clean interval
for (ρ,Qη). Then, for any α ∈ (0, 2s),

[Qη]C0,α(x0−T,x0+T ) 6 C

(
ρ1− α

2s

| log ρ|α
+ ρ

)
,

for some C > 0, independent of η.

Proof. Let ζ ∈Z be such that sup
x∈J
|Qη(x)− ζ| 6 ρ. Then, according to Definition 7.1, we have that

(7.4) T >
| log ρ|

8
,

and J ⊂ F , where F is defined as in (5.29). Therefore, by Lemma 5.3, Qη is solution of

−η Q̈η + LQη + aW ′(Qη) = 0 in J.

Then by Lemma 3.3, (5.26) and (7.4), for α < 2s, we have that

[Qη]C0,α(x0−T,x0+T ) 6 CT−α
(
1 + T 2sρ

) α
2s ρ1− α

2s

6 CT−α
(
1 + Tαρ

α
2s

)
ρ1− α

2s

6 C
(
T−αρ1− α

2s + ρ
)

6 C

(
ρ1− α

2s

| log ρ|α
+ ρ

)
,

by possibly renaming C. This proves the desired estimate of Lemma 7.4. �
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Remark 7.5. Given x0 ∈ R and β ∈ (1,+∞), let P : R→ R be a function such that

(7.5) v := P −Q]
ζ1,ζ2
∈ H1(R)

and P is Hölder continuous in (x0 − β, x0 + β), with

(7.6) [P ]C0,α(x0−β,x0+β) 6 δ,

for some δ > 0. Given T1, T2 such that −∞ 6 T1 6 x0 − β < x0 + β 6 T2 6 +∞, let us denote

I− := (T1, x0), I+ := (x0, T2)

and
J− := (T1, x0 − β), D− := (x0 − β, x0), D+ := (x0, x0 + β), J+ := (x0 + β, T2).

We want to estimate E(T1,T2)2(P ) in terms of EI2−(P ) and EI2+(P ). We have that

(7.7) E(T1,T2)2(P ) = EI2−(P ) + EI2+(P ) + 2EI−×I+(P )

and

(7.8) EI−×I+(P ) = EJ−×I+(P ) + ED−×D+(P ) + ED−×J+(P ).

By (7.6) and (1.4),

0 6 ED−×D+(P ) + [Q]
ζ1,ζ2

]2K,D−×D+
=

∫ x0

x0−β

∫ x0+β

x0

|P (x)− P (y)|2K(x− y) dx dy

6 Θ0δ
2

∫ x0

x0−β

∫ x0+β

x0

|x− y|2α−1−2s dx dy

6 κδ2β2α+1−2s.

(7.9)

Moreover, recalling (7.5), we have that

EJ−×I+(P ) = [v]2K,J−×I+ + 2BJ−×I+(v,Q]
ζ1,ζ2

).(7.10)

Now, by (1.4),∣∣∣BJ−×I+(v,Q]
ζ1,ζ2

)
∣∣∣ =

∣∣∣∣∫ x0−β

T1

∫ T2

x0

(
v(x)− v(y)

)(
(Q]

ζ1,ζ2
)(x)− (Q]

ζ1,ζ2
)(y)

)
K(x− y) dx dy

∣∣∣∣
6 2Θ0‖Q]

ζ1,ζ2
‖L∞(R)

∫ x0−β

−∞

∫ +∞

x0

(
|v(x)|+ |v(y)|

)
|x− y|−1−2s dx dy

=
Θ0‖Q]

ζ1,ζ2
‖L∞(R)

s

[∫ x0−β

−∞
|v(x)|(x0 − x)−2s dx+

∫ +∞

x0

|v(y)|(y − x0 + β)−2s dy

]
.

In addition, using the Cauchy-Schwarz inequality and (1.5), we see that∫ x0−β

−∞
|v(x)|(x0 − x)−2s dx 6

(∫ x0−β

−∞
|v(x)|2 dx)

) 1
2
(∫ x0−β

−∞
(x0 − x)−4s dx

) 1
2

6 κ‖v‖L2(R)β
− 4s−1

2 .

Similarly, ∫ +∞

x0

|v(y)|(y − x0 + β)−2s dy 6 κ‖v‖L2(R)β
− 4s−1

2 .

Plugging these pieces of information into (7.10), we have that

(7.11)
∣∣EJ−×I+(P )

∣∣ 6 [v]2K,(−∞,x0−β)×(x0,+∞) + κ‖v‖L2(R)β
− 4s−1

2

Similar computations give

(7.12)
∣∣ED−×J+(P )

∣∣ 6 [v]2K,(x0−β,x0)×(x0+β,+∞) + κ‖v‖L2(R)β
− 4s−1

2
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Hence, from (7.8), (7.9), (7.11) and (7.12), we conclude that∣∣∣EI−×I+(P ) + [Q]
ζ1,ζ2

]2K,(x0−β,x0)×(x0,x0+β)

∣∣∣
6 κδ2β2α+1−2s0 + κ‖v‖L2(R)β

− 4s−1
2 + [v]2K,(−∞,x0−β)×(x0,+∞) + [v]2K,(x0−β,x0)×(x0+β,+∞).

This and (7.7) imply that∣∣∣E(T1,T2)2(P )− E(T1,x0)2(P )− E(x0,T2)2(P ) + 2[Q]
ζ1,ζ2

]2K,(x0−β,x0)×(x0,x0+β)

∣∣∣
6 κδ2β2α+1−2s + κ‖v‖L2(R)β

− 4s−1
2 + 2[v]2K,(−∞,x0−β)×(x0,+∞) + 2[v]2K,(x0−β,x0)×(x0+β,+∞).

(7.13)

Now, thanks to (7.13), one can consider a clean point x0 (according to Definitions 7.1 and 7.2) and
glue an optimal trajectory Qη to a linear interpolation with the integer ζ, close to Qη(x0). Namely, one
can consider

(7.14) P (x) :=

{
Qη(x) if x 6 x0,
R(x) if x > x0,

where R is such that P −Q]
ζ1,ζ2
∈ H1(R) and it is defined in [x0, x0 + β] as follows:

R(x) :=

{
Qη(x0) (x0 + 1− x) + ζ (x− x0) if x ∈ (x0, x0 + 1),

ζ if x ∈ [x0 + 1, x0 + β).

In this way, and taking ρ > 0 suitably small, by Definitions 7.1 and 7.2, we know that Qη is ρ-close to
an integer in [x0 − 4β, x0 + 4β], with

(7.15) β = β(ρ) =
| log ρ|

8
.

Moreover, by Lemma 7.4, we have that, for α ∈ (0, 2s),

(7.16) [Qη]C0,α(x0−β,x0+β) 6 C

(
ρ1− α

2s

| log ρ|α
+ ρ

)
,

for some C > 0. Also, we observe that

[R]C0,α(x0,x0+β) 6 κρ.

As a consequence of this and (7.16), the function P defined in (7.14) satisfies (7.6) with

(7.17) δ := C

(
ρ1− α

2s

| log ρ|α
+ ρ

)
and α ∈ (0, 2s). Thus, choosing β as in (7.15) and δ as in (7.17), and recalling (5.10) and (5.27), we
infer from estimate (7.13) that

(7.18)
∣∣∣E(T1,T2)2(P )− E(T1,x0)2(Qη)− E(x0,T2)2(R) + 2[Q]

ζ1,ζ2
]2K,(x0−β,x0)×(x0,x0+β)

∣∣∣ 6 ♦,
where we use the notation “♦” to denote quantities that are as small as we wish when ρ is sufficiently
small. The smallness of ρ depends on Q]

ζ1,ζ2
, η and the structural constants of the kernel and the

potential.
We remark that, in virtue of (7.16), we also have that

(7.19)
∣∣∣E(T1,T2)2(Qη)− E(T1,x0)2(Qη)− E(x0,T2)2(Qη) + 2[Q]

ζ1,ζ2
]2K,(x0−β,x0)×(x0,x0+β)

∣∣∣ 6 ♦.
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8. Stickiness properties of energy minimizers

In this section we show that the minimizers have the tendency to stick at the integers once they
arrive sufficiently close to them. For this, we recall that r ∈ (0, min{δ0, r0}] (with δ0 and r0 as in (1.4)
and (1.9), respectively) has been fixed at the beginning of Section 5.

Proposition 8.1. Let ρ ∈ (0, 1). Let Qη be as in Lemma 5.1. Let x1, x2 ∈ R be clean points for (ρ,Qη),
according to Definition 7.2, with x2 > x1 + 4, and

(8.1) max
i=1,2
|Qη(xi)− ζ| 6 ρ,

for some ζ ∈Z. Then

(8.2)
η

2

∫ x2

x1

|Q̇η(x)|2 dx+
1

4
[Qη]

2
K,(x1,x2)2 +

∫ x2

x1

a(x)W (Qη(x)) dx 6 ♦,

with ♦ as small as we wish if ρ is suitably small (the smallness of ρ depends on Q]
ζ1,ζ2

, and on structural
constants, but it is independent of η).

Moreover,

(8.3) |Qη(x)− ζ| 6 r/2 for every x ∈ [x1, x2].

Proof. We define

P (x) :=


Qη(x) if x ∈ (−∞, x1),

Qη(x1)(x1 + 1− x) + ζ(x− x1) if x ∈ [x1, x1 + 1],
ζ if x ∈ (x1 + 1, x2 − 1),

Qη(x2)(x− x2 + 1) + ζ(x2 − x) if x ∈ [x2 − 1, x2],
Qη(x) if x ∈ (x2,+∞).

In this way, we have that

(8.4) [P ]C0,1(x1,x2) 6 ρ.

Moreover, we observe that, if x ∈ (x1, x2), then

|P (x)− ζ|
6 sup

y∈(x1,x1+1)

|Qη(x1)(x1 + 1− y) + ζ(y − x1)− ζ|+ sup
y∈(x2−1,x2)

|Qη(x2)(y − x2 − 1) + ζ(x2 − y)− ζ|

6 |Qη(x1)− ζ|+ |Qη(x2)− ζ| 6 2ρ,

(8.5)

thanks to (8.1). Also,

(8.6) if x, y ∈ (x1, x2), then |P (x)− P (y)| 6 2ρ.

Now, let us estimate [P ]2K,(x1,x2)2 . We have

[P ]2K,(x1,x2)2 = [P ]2K,(x1,x1+1)×(x1,x2) + [P ]2K,(x1+1,x2−1)×(x1,x2) + [P ]2K,(x2−1,x2)×(x1,x2).(8.7)

Using (1.4), (8.4) and (8.6), we see that

[P ]2K,(x1,x1+1)×(x1,x2)

=

∫ x1+1

x1

∫ x1+2

x1

|P (x)− P (y)|2K(x− y) dx dy +

∫ x1+1

x1

∫ x2

x1+2

|P (x)− P (y)|2K(x− y) dx dy

6 Θ0ρ
2

∫ x1+1

x1

∫ x1+2

x1

|x− y|1−2s dx dy + 4Θ0ρ
2

∫ x1+1

x1

∫ x2

x1+2

|x− y|−1−2s dx dy

6 κρ2

= ♦.

(8.8)
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Similarly,

(8.9) [P ]2K,(x2−1,x2)×(x1,x2) 6 ♦.

Finally, making again use of (1.4), (8.4) and (8.6), we compute

[P ]2K(x1+1,x2−1)×(x1,x2)

=

∫ x2−1

x1+1

∫ x1+1

x1

|P (x)− P (y)|2K(x− y) dx dy +

∫ x2−1

x1+1

∫ x2

x2−1

|P (x)− P (y)|2K(x− y) dx dy

=

∫ x1+2

x1+1

∫ x1+1

x1

|P (x)− P (y)|2K(x− y) dx dy +

∫ x2−1

x1+2

∫ x1+1

x1

|P (x)− P (y)|2K(x− y) dx dy

+

∫ x2−2

x1+1

∫ x2

x2−1

|P (x)− P (y)|2K(x− y) dx dy +

∫ x2−1

x2−2

∫ x2

x2−1

|P (x)− P (y)|2Km(x− y) dx dy

6 κρ2
(∫ x1+2

x1+1

∫ x1+1

x1

|x− y|1−2s dx dy +

∫ x2−1

x2−2

∫ x2

x2−1

|x− y|1−2s dx dy

+

∫ x2−1

x1+2

∫ x1+1

x1

|x− y|−1−2s dx dy +

∫ x2−2

x1+1

∫ x2

x2−1

|x− y|−1−2s dx dy
)

6 κρ2

= ♦.

(8.10)

Therefore, collecting estimates (8.7), (8.8), (8.9) and (8.10), we get

(8.11) [P ]2K,(x1,x2)2 6 ♦.

Combining (7.18) (applied here twice, with x0 := x1 and x0 := x2) with (8.11) yields, for β as in (7.15),

ER2(P ) 6 E(−∞,x1)2(Qη) + E(x1,x2)2(P ) + E(x2,+∞)2(Qη) +♦
− 2[Q]

ζ1,ζ2
]2K,(x1−β,x1)×(x1,x1+β) − 2[Q]

ζ1,ζ2
]2K,(x2−β,x2)×(x2,x2+β)

= E(−∞,x1)2(Qη) + E(x2,+∞)2(Qη) +♦− [Q]
ζ1,ζ2

]2K,(x1,x2)2

− 2[Q]
ζ1,ζ2

]2K,(x1−β,x1)×(x1,x1+β) − 2[Q]
ζ1,ζ2

]2K,(x2−β,x2)×(x2,x2+β).

(8.12)

On the other hand, by (7.19) (again applied here twice, with x0 := x1 and x0 := x2), we have that

ER2(Qη) > E(−∞,x1)2(Qη) + E(x1,x2)2(Qη) + E(x2,+∞)2(Qη) +♦
− 2[Q]

ζ1,ζ2
]2K,(x1−β,x1)×(x1,x1+β) − 2[Q]

ζ1,ζ2
]2K,(x2−β,x2)×(x2,x2+β).

(8.13)

Subtracting (8.13) to (8.12), we get

(8.14) ER2(P )− ER2(Qη) 6 −[Qη]
2
K(x1,x2)2 +♦.

In addition, by (1.9) and (8.5), we see that if x ∈ (x1, x2) then W (P (x)) 6 4C0ρ
2. Using this and the

fact that W (P (x)) = W (ζ) = 0 if x ∈ (x1 + 1, x2 − 1), we conclude that∫ x2

x1

W (P (x)) dx =

∫ x1+1

x1

W (P (x)) dx+

∫ x2

x2−1

W (P (x)) dx 6 8C0 ρ
2.

Thus, by the minimality of Qη for Iη (defined in (5.7)) and (8.14),

0 6 Iη(P )− Iη(Qη)

6 ηρ− η

2

∫ x2

x1

|Q̇η(x)|2 dx− 1

4
[Qη]

2
K,(x1,x2)2 −

∫ x2

x1

a(x)W (Qη(x)) dx+♦,

which proves (8.2).
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Now we prove (8.3). For this, we assume by contradiction that there exists x̃ ∈ [x1, x2] such
that |Qη(x̃)− ζ| > r/2.

By Corollary 6.2, we have that Qη is Hölder continuous (with uniform bound). Hence, since |Qη(x1)−
ζ| 6 ρ < r/2, we obtain that there exists x̂ ∈ [x1, x2] such that

(8.15) |Q(x̂)− ζ| = r

2
.

In particular, there exists ` independent of η such that, for any x ∈ [x̂− `, x̂+ `] and α ∈ (0, 2s),

|Qη(x)−Qη(x̂)| 6 κ |x− x̂|α 6 r

4
.

This and (8.15) imply that, if x ∈ [x̂− `, x̂+ `],

Qη(x) ∈ B3r/4(ζ) \Br/4(ζ)

and thus

dist
(
Qη(x),Z

)
>
r

4
,

for all x ∈ [x̂− `, x̂+ `]. This, (1.9) and (1.10) give that∫ x̂+`

x̂−`
a(x)W (Qη(x)) dx > a

∫ x̂+`

x̂−`
W (Qη(x)) dx > 2` a inf

dist (τ, Z)>r/4
W (τ) =: c.

Hence, noticing that (x̂− `, x̂+ `) ⊆ (x1, x2), we obtain that∫ x2

x1

a(x)W (Qη(x)) dx > c,

and this is in contradiction with (8.2) for small ρ. Then, the proof of (8.3) is now complete. �

9. Unconstrained minimization for a perturbed problem

Here, recalling the setting of Section 5, we show that if b1 and b1 are sufficiently separated, then the
constrained minimizer, whose existence has been established in Lemma 5.1, is in fact an unconstrained
minimizer. The idea for this is that the “excursion” of the minimizer will occur at the points “favored
by the wells of a” (recall the non-degeneracy condition in (1.12)), which can be placed suitably far from
the constraints.

Fixed ζ1 6= ζ2 ∈Z, we consider the minimizer Qη = Qζ1,ζ2
η for Iη as given in Lemma 5.1. Let also

(9.1) Iζ1 := inf
ζ2∈Z\{ζ1}

Iη(Q
ζ1,ζ2
η ).

We remark that, by (5.26), only a finite number of integer points ζ2 takes part to the minimization
procedure in (9.1). Accordingly, we can write

(9.2) Iζ1 = min
ζ2∈Z\{ζ1}

Iη(Q
ζ1,ζ2
η )

and define A(ζ1) the family of all ζ2 ∈Z attaining such minimum.
In what follows we make explicit the dependence of the set Γ(b1, b2), defined in (5.6), on ζ1 and ζ2

and we denote it by Γ(b1, b2, ζ1, ζ2).

Lemma 9.1. There exists ρ∗ > 0, possibly depending on Q]
ζ1,ζ2

and on structural constants, such that
if ρ ∈ (0, ρ∗] the following statement holds.

Let ζ1 ∈ Z and ζ2 ∈ A(ζ1). Let Qζ1,ζ2
η be as in Lemma 5.1. Assume that there exist ζ ∈ Z and a

clean point x∗ ∈ (b1 + 1, b2 − 1) such that Qζ1,ζ2
η (x∗) ∈ Bρ(ζ).

Then ζ ∈ {ζ1, ζ2}.
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Proof. Suppose by contradiction that ζ 6∈ {ζ1, ζ2}. We define

P (x) :=

 Qζ1,ζ2
η (x) if x 6 x∗,

Qζ1,ζ2
η (x∗)(x∗ + 1− x) + ζ(x− x∗) if x ∈ (x∗, x∗ + 1),

ζ if x > x∗ + 1.

By construction, P belongs to the set Γ(b1, b2, ζ1, ζ) and ζ 6= ζ1. Therefore, using the minimality of Qζ1,ζ2
η ,

(9.3) Iη(Q
ζ1,ζ2
η ) 6 Iη(P ).

On the other hand, using (7.18), we see that for β defined as in (7.15)

E(R2)(P ) 6 E(−∞,x∗)2(P ) + E(x∗,+∞)2(P )− 2[Q]
ζ1,ζ2

]2K,(x∗−β,x∗)×(x∗,x∗+β) +♦

6 E(−∞,x∗)2(Q
ζ1,ζ2
η )− [Q]

ζ1,ζ2
]2K,(x∗,+∞)2 − 2[Q]

ζ1,ζ2
]2K,(x∗−β,x∗)×(x∗,x∗+β) +♦.

(9.4)

Moreover, by (7.19),

ER2(Qζ1,ζ2
η ) > E(−∞,x∗)2(Q

ζ1,ζ2
η ) + E(x∗,+∞)2(Q

ζ1,ζ2
η )− 2[Q]

ζ1,ζ2
]2K,(x∗−β,x∗)×(x∗,x∗+β) +♦.(9.5)

Estimates (9.3), (9.4) and (9.5) imply that

(9.6) 0 6 Iη(P )− Iη(Qζ1,ζ2
η ) 6

∫ +∞

x∗

a(x)
[
W (P (x))−W (Qζ1,ζ2

η (x))
]
dx+♦.

Now we use that ζ 6= ζ2 and that |Qζ1,ζ2
η (b2)−ζ2| 6 5

4
r (recall (5.6)) to find y∗ ∈ [x∗, b2] for whichQζ1,ζ2

η (y∗) =

ζ2 + 1
2

or Qζ1,ζ2
η (y∗) = ζ2 − 1

2
. Assume, without loss of generality, that Qζ1,ζ2

η (y∗) = ζ2 + 1
2
. Then, by

Corollary 6.2, there exists ` > 0 independent of η such that Qζ1,ζ2
η (x) stays at distance at least 1/4

from Z for all x ∈ [y∗, y∗ + `]. Accordingly,∫ +∞

x∗

a(x)W (Qζ1,ζ2
η (x)) dx > a

∫ y∗+`

y∗

W (Qζ1,ζ2
η (x)) dx > a ` inf

dist (τ,Z)>1/4
W (τ) =: c̃.

Plugging this into (9.6) and using the definition of P , we obtain

0 6 Iη(P )− Iη(Qζ1,ζ2
η ) 6 ♦− c̃,

which is a contradiction for ρ small enough. This completes the proof of Lemma 9.1. �

Proposition 9.2. There exist b1, b2 ∈ R and Q?
η ∈ Γ(b1, b2) such that

(9.7) Iη(Q
?
η) 6 Iη(Q) for all Q s.t. Q−Q]

ζ1,ζ2
∈ H1(R).

Also, letting v?η := Q?
η −Q

]
ζ1,ζ2

, it holds that

[v?η]H1(R) 6
κ

η
,(9.8)

[v?η]K,R×R 6 κ,(9.9)

‖v?η‖L∞(R) 6 κ,(9.10)

‖v?η‖L2(R) 6 κ(9.11)

and ‖v?η‖C0,α(R) 6 κ for all α ∈ (0, 2s),(9.12)

for some κ > 0, which possibly depends on Q]
ζ1,ζ2

and on structural constants.

Proof. We stress that the main difference between (5.8) and (9.7) is that the competitors in (9.7) do not
need to be in Γ(b1, b2) and so Q?

η is a free minimizer. The proof of Proposition 9.2 is a slight modification
of the proof of Theorem 9.4 in [DPV17], and we refer to it for more details.

Let ζ1 ∈Z and ζ2 ∈ A(ζ1). Let Q?
η := Qζ1,ζ2

η be as in Lemma 5.1 and let v?η := Q?
η −Q

]
ζ1,ζ2

. Then by
Lemma 5.1, Corollary 5.2 and Corollary 6.2 we have that v?η satisfies (9.8)-(9.12).
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To prove (9.7), we fix ρ ∈ (0, r), to be taken sufficiently small, and we set

b1 = m1 and b2 = m2,

with m1,m2 given by (1.12). To prove Proposition 9.2, we want to show that Q?
η does not touch the

constraints of Γ(b1, b2, ζ1, ζ2). Assume by contradiction that

(9.13) there exists x1 6 b1 = m1 such that either Q?
η(x1) = Φ(x1) or Q?

η(x1) = Ψ(x1),

the other case being similar. In particular, by (5.4) and (5.5), we have that |Q?
η(x1) − ζ1| > 3

4
r. Also,

by (9.12), we know that [Q?
η]C0,α(R) 6 κ, for α ∈ (0, 2s). Thus, by Lemma 7.3, if

ω >
κ1κ

1
α

ρ2+ 1
α

| log ρ|+ 1,

we conclude that

(9.14) there exist a clean point x∗ ∈ (m1 + 1,m1 + ω) and ζ ∈Z such that Q?
η(x∗) ∈ Bρ(ζ).

Furthermore, by Lemma 9.1, we have that ζ ∈ {ζ1, ζ2}. Now, arguing as in [DPV17] and using (9.13),
we see that we must actually have that

(9.15) ζ = ζ2

and that Q?
η(x) ∈ B r

2
(ζ2) for any x > x∗. In particular, since by (1.11), x∗ 6 m1 +ω 6 m2− θ, we have

that

(9.16) Q?
η(x) ∈ B r

2
(ζ2) for any x > m2 − θ.

Now we define P (x) := Q?
η(x − θ). Due to (9.16), we have that P ∈ Γ(b1, b2, ζ1, ζ2) and therefore, by

the minimality of Q?
η,

0 6 I(P )− I(Q?
η) =

∫
R
a(x)W (P (x)) dx−

∫
R
a(x)W (Q?

η(x)) dx

=

∫
R
a(x)W (Q?

η(x− θ)) dx−
∫
R
a(x)W (Q?

η(x)) dx

=

∫
R

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx.

(9.17)

Now, we observe that Q?
η(m1) ∈ B 5

4
r(ζ1) and Q?

η(x∗) ∈ Bρ(ζ2), due to (9.14) and (9.15). Therefore, since

Q∗η is continuous, there exists y∗ ∈ (m1,m1 + ω) such that either Q∗η(y∗) = ζ1 + 1
2

or Q∗η(y∗) = ζ1 − 1
2
.

Assume without loss of generality that Q∗η(y∗) = ζ1 + 1
2
. Then by the Hölder continuity of Q?

η, there
exists an interval J∗ ⊂ (m1,m1 + ω) of uniform length and centered at y∗ such that Q?

η(x) stays at
distance 1/4 from Z for any x ∈ J∗. Therefore, using (1.12), we get∫ m1+ω

m1−ω

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx 6
∫
J∗

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx

6 −γ
∫
J∗

W (Q?
η(x)) dx 6 −γ̃ inf

dist(τ,Z)>1/4
=: −γ̂.

(9.18)

Now, by (5.27) and the continuity of Q?
η, we know that there exists a sequence of points yk > b2 = m2

with yk → +∞ as k → +∞, such that yk is a clean point for Q?
η and Q?

η(yk) ∈ Bρ(ζ2). Then,
recalling (9.14) and (9.15), by (8.2) and (1.10), we have that∫ yk

x∗

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx 6 ♦.



36 SERENA DIPIERRO, STEFANIA PATRIZI AND ENRICO VALDINOCI

On that account, sending k → +∞, we obtain that

(9.19)

∫ +∞

m1+ω

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx 6 ♦.

On the other hand, by arguing as in [DPV17], we have that

(9.20)

∫ m1−ω

−∞

[
a(x+ θ)− a(x)

]
W (Q?

η(x)) dx 6 ♦.

By plugging (9.18), (9.19) and (9.20) into (9.17), we conclude that

0 6 −γ̂ +♦.
The latter inequality is negative for ρ sufficiently small, and so we have obtained the desired contradic-
tion. This proves (9.7).

�

10. Vanishing viscosity method and proof of Theorem 1.1

Now we consider the free minimizer constructed in Proposition 9.2 and we send η → 0. The uniform
estimates in (9.9), (9.10), (9.11) and (9.12) will allow us to pass to the limit and obtain a free minimizer,
hence a solution, of the original nonlocal problem, thus completing the proof of Theorem 1.1.

This perturbative technique may be thought as a nonlocal counterpart of the so-called vanishing vis-
cosity method for Hamilton-Jacobi equations, in which a small viscosity term is added as a perturbation
to obtain solutions of the original equation.

To this aim, we consider I0 to be the energy functional corresponding to the choice η := 0 in (5.7),
namely the one in (1.14).

Then, for any η > 0, we take Q?
η to be the free minimizer given by Proposition 9.2. We consider an

infinitesimal sequence ηj → 0 and let Q?
j := Q?

ηj
and vj? := Q?

j −Q
]
ζ1,ζ2

.

Since the estimates in (9.9), (9.10), (9.11) and (9.12) are uniform in ηj, up to a subsequence we can
assume that v?j converges to some v? locally uniformly in R and weakly in the Hilbert space induced

by [·]K,R×R. Then, we set Q? := v? +Q]
ζ1,ζ2

.
By passing to the limit in (9.7), we obtain (1.17). Also, from (9.9) and (9.11) we obtain (1.18) and

from (9.10) and (9.12) we obtain (1.19).
Since Q? is a minimizer of I0, by differentiating the energy functional we obtain (1.13) (in the distri-

butional sense, and thus also in the viscosity sense, due to [SV14]).
Since from (1.18) and (1.19) v? is uniformly continuous and also in L2(R), it follows that

lim
x→±∞

v?(x) = 0.

This implies (1.16). The proof of Theorem 1.1 is thus completed.

Appendix A. A general Sobolev Inequality

For completeness, in this appendix, we provide a Sobolev Inequality in the fractional setting, used here
on page 15. Most of the settings considered in the literature deal with the case of homogeneous kernels,
corresponding to Sobolev spaces of fractional order. The result we present here is general enough to
comprise also truncated kernels (as the ones on the left hand side of (1.4)) and so can be applied in our
context.

Proposition A.1. Let N ∈ N, N > 1, s ∈ (0, 1) and p ∈ [1,+∞) such that sp < N . Let r0 > 0. Then
there exists a positive constant C, possibly depending on N , p, s and r0, such that, for any measurable
and compactly supported function f : RN → R, we have that

‖f‖Lp∗s (RN ) 6 C

(∫∫
RN×RN

|f(x)− f(y)|p

|x− y|N+sp
χ[0,r0](|x− y|) dx dy

) 1
p

,
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where

p∗s :=
Np

N − sp
.

Proof. The proof combines the classical Sobolev Inequality in the fractional setting, an extension method
and a covering argument. The details go as follows. We fix ρ0 > 0 such that the diameter of the N -
dimensional cube of side 2ρ0 is less than or equal to r0. Then, we cover RN with a grid of adjacent
cubes Qk of side 2ρ0, k ∈ N. Notice that, by construction,

(A.1) if x, y ∈ Qk, then |x− y| 6 r0.

Also, each Qk is a Lipschitz domain and so it is an extension domain for the fractional Sobolev norm:
namely (see e.g. Theorem 5.4 in [DNPV12]) there exists an extension function f̃k such that f̃k = f
in Qk and

(A.2)

(∫∫
RN×RN

|f̃k(x)− f̃k(y)|p

|x− y|N+sp
dx dy

) 1
p

6 C

(∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
dx dy

) 1
p

.

Here and below, C > 0 may vary from line to line and depends only on N , p, s and r0.
Moreover, the classical Sobolev Inequality in fractional Sobolev spaces (see e.g. Theorem 6.5 in [DNPV12])

gives that

‖f‖Lp∗s (Qk) = ‖f̃k‖Lp∗s (Qk) 6 ‖f̃k‖Lp∗s (RN ) 6 C

(∫∫
RN×RN

|f̃k(x)− f̃k(y)|p

|x− y|N+sp
dx dy

) 1
p

.

From this and (A.2), we find that

(A.3)

∫
Qk

|f(x)|p∗s dx = ‖fk‖p
∗
s

Lp
∗
s (Qk)

6 C

(∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
dx dy

) p∗s
p

.

Now we observe that, for any a, b > 0, and any m ∈ [1,+∞), it holds that

(A.4) am + bm 6 (a+ b)m.

To check this, we consider the function

[0,+∞) 3 t 7→ g(t) :=
tm + 1

(t+ 1)m
.

We have that

g(0) = 1 = lim
t→+∞

g(t),

hence there exists a maximum point t? ∈ [0,+∞) for g. We show that t? = 0. Indeed, if not, it would
be an interior critical point, and so g′(t?) = 0. This identity would give that

mtm−1
? (t? + 1)m = m(tm? + 1)(t? + 1)m−1,

and so tm−1
? (t? + 1) = tm? + 1, which implies tm? + tm−1

? = tm? + 1 and thus t? = 1. Since g(1) = 2
2m

< 1 =
g(0), we reach a contradiction with the maximality of t?.

Having shown that the maximum point for g is reached at t? = 0, we have that g(t) 6 1 for all t > 0
and therefore, for any a, b > 0 (with, say b 6= 0) we see that

am + bm

(a+ b)m
=

(a/b)m + 1(
(a/b) + 1

)m = g(a/b) 6 1,

which establishes (A.4).
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Now, if βk > 0, with k ∈ N, fixed k0 ∈ N, using (A.4) we find that

k0∑
k=0

βmk = βm0 + βm1 +

k0∑
k=2

βmk 6= (β0 + β1)m +

k0∑
k=2

βmk 6= (β0 + β1)m + βm2 +

k0∑
k=3

βmk

6 (β0 + β1 + β2)m +

k0∑
k=3

βmk 6 . . . 6

(
k0∑
k=0

βk

)m

6

(∑
k∈N

βk

)m

.

Thus, sending k0 → +∞,

∑
k∈N

βmk 6

(∑
k∈N

βk

)m

.

Hence, we use this inequality with βk :=
∫∫

Qk×Qk
|f(x)−f(y)|p
|x−y|N+sp dx dy and m := p∗s

p
= N

N−sp > 1. In this way,

recalling (A.1), we obtain that

∑
k∈N

(∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
dx dy

) p∗s
p

6

(∑
k∈N

∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
dx dy

) p∗s
p

=

(∑
k∈N

∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
χ[0,r0](|x− y|) dx dy

) p∗s
p

6

(∑
k∈N

∫∫
Qk×RN

|f(x)− f(y)|p

|x− y|N+sp
χ[0,r0](|x− y|) dx dy

) p∗s
p

=

(∫∫
RN×RN

|f(x)− f(y)|p

|x− y|N+sp
χ[0,r0](|x− y|) dx dy

) p∗s
p

.

Exploiting this inequality and (A.3), we obtain

∫
RN
|f(x)|p∗s dx =

∑
k∈N

∫
Qk

|f(x)|p∗s dx 6 C
∑
k∈N

(∫∫
Qk×Qk

|f(x)− f(y)|p

|x− y|N+sp
dx dy

) p∗s
p

6 C

(∫∫
RN×RN

|f(x)− f(y)|p

|x− y|N+sp
χ[0,r0](|x− y|) dx dy

) p∗s
p

,

as desired. �

Appendix B. Discontinuity and oscillatory behavior at infinity for functions in
Sobolev spaces with low fractional exponents

We recall here that functions belonging to the fractional Sobolev space Hs(R) with s ∈
(
0, 1

2

)
are not

necessarily continuous, and they do not need to converge to zero at infinity.
To construct a simple example, let ϕ ∈ C∞0

(
R, [0, 1]

)
with ϕ(0) = 1. Given a sequence bk, let

(B.1) ϕbk(x) := ϕ
(
ek(x− bk)

)
.
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Then

‖ϕbk‖L2(R) =

√∫
R
|ϕ (ek(x− bk))|2 dx = e−

k
2

√∫
R
|ϕ (X)|2 dX = const e−

k
2

and [ϕbk ]Hs(R) =

√∫∫
R×R

|ϕ (ek(x− bk))− ϕ (ek(y − bk))|2

|x− y|1+2s
dx dy

= e−
(1−2s)k

2

√∫∫
R×R

|ϕ (X)− ϕ (Y )|2

|X − Y |1+2s
dX dY = const e−

(1−2s)k
2 .

We now consider the superposition of the functions ϕbk with the choices bk := k and bk := 1/k. Namely,
if we set

Φ(x) :=
+∞∑
k=1

ϕ1/k(x) +
+∞∑
k=1

ϕk(x),

when s ∈
(
0, 1

2

)
we have that

‖Φ‖Hs(R) 6
+∞∑
k=1

‖ϕ1/k‖Hs(R) +
+∞∑
k=1

‖ϕk‖Hs(R) 6 const
+∞∑
k=1

(
e−

k
2 + e−

(1−2s)k
2

)
6 const .

Nevertheless Φ is not continuous at the origin, and

lim sup
x→+∞

Φ(x) > 0 = lim inf
x→+∞

Φ(x).

The case of H1/2(R) is slightly more delicate, since simple examples based on scaling, such as the one
provided in (B.1), do not work in this case (and, in fact, functions in H1/2(R) have nicer properties in
terms of topology than those in Hs(R) with s ∈

(
0, 1

2

)
, see e.g. [BN95]). Nevertheless, also functions

in H1/2(R) are not necessarily continuous and they do not necessarily converge to zero at infinity. To
construct an example of these behaviors, as depicted in Figure 1, we consider the function

R2 3 X 7→ ψ(X) :=

{
log(1− log |X|) if X ∈ B1 \ {0},

0 otherwise.

We claim that

(B.2) ψ ∈ H1(R2).

To check this, we notice that

(B.3) ψ is supported in B1,

where it holds that

|∇ψ(X)| = 1

|X|
(
1− log |X|

) .
Therefore, using polar coordinates and the change of variable t := − log ρ, we find that

[ψ]2H1(R) =

∫
B1

1

|X|2
(
1− log |X|

)2 dX = 2π

∫ 1

0

1

ρ
(
1− log ρ

)2 dρ = 2π

∫ +∞

0

1

(1 + t)2
dt < +∞.

This, together with (B.3) and the Poincaré Inequality, proves (B.2).
Then, from (B.2) and the Trace Theorem (see e.g. formula (3.19) in [DNPV12]), we obtain that

(B.4) the function R 3 x 7→ ψ̄(x) := ψ(x, 0) belongs to H1/2(R).

Now we define the sequence of functions, for k ∈ Z and X = (x, y) ∈ R× R,

ψk(X) = ψk(x, y) := e−|k|ψ̄
(
e|k|(x− ek)

)
.
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Figure 1. The function ψ̄ and sketch of the construction of the function Ψ.

Then, in view of (B.4) we have that

‖ψk‖L2(R) = e−|k|

√∫
R

∣∣ψ̄(e|k|(x− ek))∣∣2 dx = e−
3|k|
2

√∫
R

∣∣ψ̄(η)
∣∣2 dη

= e−
3|k|
2 ‖ψ̄‖L2(R) = const e−

3|k|
2

and [ψk]H1/2(R) = e−|k|

√∫∫
R×R

∣∣ψ̄(e|k|(x− ek))− ψ̄(e|k|(y − ek))∣∣2
|x̄− ȳ|2

dx dy

= e−|k|

√∫∫
R×R

|ψ̄(η)− ψ̄(ξ)|2
|η − ξ|2

dη dξ = e−|k| [ψ̄]H1/2(R) = const e−|k|.

Consequently, if we set

R 7→ Ψ(x) :=
∑
k∈Z

ψk(x),

it holds that Ψ is not continuous (and not even locally bounded) and it does not go to zero at infinity,
but it belongs to H1/2(R) since

‖Ψ‖H1/2(R) 6
∑
k∈Z

‖ψk‖H1/2(R) 6 const
∑
k∈Z

(
const e−

3|k|
2 + const e−|k|

)
6 const .
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