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Abstract

In this paper we consider extended stationary mean-field games, that is mean-field games
which depend on the velocity field of the players. We prove various a-priori estimates which
generalize the results for quasi-variational mean-field games in [GPSM12]. In addition we
use adjoint techniques to obtain higher regularity bounds. Then we establish existence of
smooth solutions under fairly general conditions by applying the continuity method. When
applied to standard stationary mean-field games as in [LL06a, [GSM11] or [GPSM12] this
paper yields various new estimates and regularity properties not available previously. We
discuss additionally several examples where existence of classical solutions can be proved.

1 Introduction

In an attempt to understand the limiting behavior of systems involving very large numbers of
rational agents behaving non-cooperatively and under symmetry assumptions, Lasry and Lions
[LLO6a, LLOGb, LLO7a, LLO7b], and, independently, and around the same time Huang, Malhamé,
and Caines [HMCO06], [HCMO07], introduced a class of models called mean-field games. These
problems attracted the attention of many other researchers and the progress has been quite fast,
for recent surveys see [LLG10], [Car], and [GS13] and references therein.

Denote by T? the d-dimensional torus, and P(T¢) the set of Borel probability measures on T¢
and let P2¢(T%) the set of measures from P(T¢) which are absolutely continuous. Let

F:T% x R x P*°(T4) - R

be a function satisfying appropriate continuity, differentiability and growth conditions. An impor-
tant class of stationary mean field games, see for instance [LL06a], can be modeled by a system
of PDE’s of the form

Av(x) + F(z, Dv(z), f) = F

Af(z) — div(D,F(z, Du(x). f)f(x)) = 0. (L)

To avoid additional difficulties it is usual to consider periodic boundary data, or equivalently,
taking z € T¢. The unknowns of the previous PDE are a triplet (F,v, f) where F is a real
number, v € C2(T9), and f € P(T9).
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Stationary mean-field games have an independent interest but also, as shown in [CLLP] and
[Carl3a] (see also [GMS10], and [GMS11], for discrete state problems) they encode the asymptotic
long time behavior of various mean-field games. Equations of the form (1.1) also arise in calculus
of variations problems. One important example is the following: given Hy: T¢ x R* — R consider
the stochastic Evans-Aronsson problem

inf / DD+ Ho (@, Do) g
¢ Jrd

where the minimization is taken over all ¢ € C2(T9). The Euler-Lagrange for this functional can
be written as

eAu(z) + Ho(z, Du(z)) = Inm(z) + H

eAm(z) — div(D,Ho(z, Du(z))m(x)) = 0,
where H is an additional parameter chosen so that m = e2u@)+Ho(x.Du@@)—H g 5 probability
measure in T¢. When e¢ = 0 this problem was studied in [Eva03] (see also [GISMY10]) and
the case € > 0 in [GSM11] (for d < 3 or quadratic Hamiltonians in arbitrary dimension). A
natural generalization of these problems is the so called class of quasi-variational mean-field games,
considered in [GPSM12], which consists in mean-field games which are perturbations of mean-field
games with a variational structure.

In this paper we consider a further extension of the mean field problem (1.1) which allows the

cost function of a player to depend also on the velocity field of the players. In order to do so,
denote by x(T%) the set of continuous vector fields on T¢. Let

H: T4 x R? x P*(T¢) x x(T%) — R

be a function satisfying appropriate conditions as we detail in Section 2. We consider the following
equation on the d—dimensional torus T¢.

Au(z) + H(z, Du(z),m,V) = H
Am(z) — div(V(x)m(z)) =0 (1.2)
V(z) = DpH(x, Du(z),m,V).

The unknowns for this problems are u: T¢ — R, identified with a Z%periodic function on R¢
whenever convenient, a probability measure m € P(T4%), the effective Hamiltonian H € R and the
effective velocity field V' € x(T?). We require m to be a probability measure absolutely continuous
with respect to Lebesgue measure with strictly positive density.

An example problem is the following:

H(e.p.m.V) = 5ol = op | Viw)dm() = g(m), (1.3

with a small enough, where g : Rf — R is an increasing function, typically g(m) = Inm or
g(m) =m7.

The main result in this paper is Theorem 7.1 which establishes the existence of classical so-
lutions for (1.2) for a general class of Hamiltonians H of which (1.3) is a main example. Two
explicit applications of this result are presented in Theorems 8.1 and 8.2. In particular, in the
case g(m) = lnm we obtain smooth solutions in any dimension d; for the case g(m) = m?, v > 0,
our results yield smooth solutions for d < 4, and, in general, for v < ﬁ ifd>5.

To the best of our knowledge, all previous results in the literature for mean-field games do
not consider the dependence on V. However, even without this dependence this paper extends
substantially previous results. In [LLO7a] Lions and Lasry considered mean-field games with
Lipschitz (with respect to Wasserstein metric) nonlinearities (see also [LLO6b] and the notes P.



Cardaliaguet [Car] for a detailed proof); additionally, in the same paper, the existence of solutions
in Sobolev spaces for time dependent problems was also considered. In the stationary setting
related estimates are discussed in the present paper in Section 3 as a preliminary step towards
additional regularity. In [GSM11] and [GPSM12] the variational and quasivariational settings for
stationary mean field games were considered. In [GSM11] the g(m) = Inm was addressed and for
dimension d < 3 existence of classical solutions was established. In [GPSM12], for g(m) = m?,
0 < v < 1, the following a-priori estimate was proved: u € W24, ¢ > 1 in dimensions d < 3.

For the time dependent problem, not addressed in the present paper, in [LLO6b] the authors
addressed existence of weak-solutions for the initial-terminal value problem. Concerning the plan-
ning problem, these are investigated in [Por13]. Weak solutions are also addressed using variational
methods in [Carl3b]. For quadratic Hamiltonians, existence of smooth solutions has been estab-
lished in the appendix of [CLLP]. As presented in [Liol2], mean-field games with quadratic or
subquadratic growth, and the model non-linearity g(m) = m®, admit classical solutions under
some constraints on «. Existence of smooth solutions for the time dependent case is addressed in
the upcoming papers [GPSM13a, GPSM13b] where the authors substantially improve and extend
the results in [Liol2], in particular address superquadratic Hamiltonians.

The paper is structured as follows: we start in Section 2 by discussing the main hypothesis.
Then we proceed to Section 3 where we present some elementary estimates for solutions to (1.2)
which are analogues of the estimates for time-dependent problems in [LL07a] and the ones in
[GPSM12]. In particular we prove H! bounds for m and WP bounds for u. In Section 4 we
obtain further integrability and regularity properties of m and u, such as H' bounds of | Inm/|4
for any g > 1, integrability of mlm for some 79 > 0, W29 bounds for v for some ¢ > 1 if
g(m) = Inm. Furthermore we prove L" bound for g(m) with r > d, and L? bound for D(g(m))
both for logarithmic g(m) = Inm and power g(m) = m?” nonlinearities. In Section 5 we consider
Hamiltonians of a special form which can not be handled by methods of Section 6. For these
Hamiltonians in case of logarithmic nonlinearity g(m) = lnm we obtain L bounds for %, and
W22 bounds for u. Additionally, for dimensions not greater than 3 we establish also W and
W32 bounds for u. In Section 6 we employ the adjoint method technique developed by L. C.
Evans ([Eval0]) to prove W1° bounds for u for a broad class of Hamiltonians. This application
of the adjoint method extends the ideas in [GSM11]. We end the section by proving a-priori
bounds for all derivatives of m and u for both logarithmic g(m) = Inm and power like g(m) = m”
nonlinearities for any v > 0 if d < 4 and for v € (0, ﬁ) if d > 4. The same bounds are also
proved for the Hamiltonians of special form considered in Section 5 with logarithmic nonlinearities
in dimensions not grater than 3. In Section 7 we use bounds from Section 6 and continuation
method to prove existence of smooth solutions to (1.2), for this we impose further assumptions
which are related with the monotonicity conditions by J. M. Lasry-P. L. Lions used to establish
uniqueness (see [LL0O7a],[Car]). Finally in Section 8 we present two examples of problems for which
our existence results apply. The first example is the case without velocity field dependence, the
second case concerns Hamiltonians of simple form with small dependence on velocity field.

2 Assumptions

In this section we introduce and discuss the various assumptions that will be needed throughout
the paper. Further hypothesis needed for application of continuation method are discussed only
in Section 7. Other additional estimates can be proven under different assumptions, and those are
discussed only in Section 5.

We will be working under the assumption that H is quasi-variational([GPSM12]):

(A1) There exists a function g: (0,00) — R and a continuous Hamiltonian

Hy: T x R? x P(T4) x x(T?) — R,



such that:
|H(x,p,m, V) - Ho(ac,p,m, V) +g(m(x))| S C7

for all (x,p,m,V) € T? x R? x P(T4) x x(T?).
Note that unlike H, Hy does not depend in m pointwisely.

(A2) The function g : (0,00) — R is smooth, strictly increasing. More precisely one of the
following holds:

a)
g(m) =Inm,

b)
g(m) =m7", with v > 0,

in which case we will refer to them as, respectively, Assumption (A2a) or (A2b).

Remark 1. In fact one could consider a general local dependence on the measure g(x, m) and
having similar growth in m. Most arguments would work as well without any substantial change.
See the Remark 5 after Proposition 3.7, where some of the additional modifications are outlined.

We suppose that for the Hamiltonians H : T? x R? x P¢(T4) x x(T¢) — R and Hy : T? x
R*P(T?) x x(T¢) — R the following assumptions are satisfied:

(A3) There exist constants C' > 0 (also denoted as C43 whenever the explicit constant is neces-
sary), and § > 0 such that for all (z,p,m,V) € T¢ x R? x P(T?) x x(T4),

b2 < €+ CHow,p.m, V) +5/d V2 dm.
T

(A4) For any m € P(T%) and V € x(T?) the function H(z,p,m,V) + g(m(x)) is smooth in
variables x, p with locally uniformly bounded derivatives.

For (x,p,m,V) € T? x R% x P(T9) x x(T?) we define the Lagrangian L associated with H as
L(x,p,m,V) = fH(x,p,m, V)erDpH(x,p,m, V) (21)
With this notation we assume further:

(A5) There exists ¢ > 0 such that, for all (z,p,m, V) € T¢ x R% x P(T9) x x(T)

L(x,p,m,V) ZCHO(xapvma V)—'_g(m)_c_(s ‘V‘2dm (22)
Td

(A6) There exist a constant C' > 0 (also denoted as Cy6 whenever the explicit constant is neces-
sary) such that for all (z,p,m,V) € T4 x R? x Pa¢(T%) x x(T9)

|D,H(z,p,m,V)|> < C + CHy(z,p,m,V)+3d [ |V[>dm. (2.3)
Td

The following hypothesis depends implicitly upon the bounds given in Proposition 3.5.

(A7) We assume
0 € [07 60}7
where d is a constant which depends only on the constants ¢, Cx3 and C 46 from Assumptions
(A5), (A3) and (A6), respectively, and is determined explicitly by condition (3.5) in the proof
of Proposition 3.5.



Remark 2. Assumption (A7) imposes a small dependence condition in the velocity field. The
need of this assumption is justified by the consideration that one needs a solvability assumption on
the third equation in (1.2). Indeed, without the smallness condition it is not clear one can solve
that equation. As an example one may consider the Hamiltonian H(x,p) = %|p|2 +a(z) + ap -
Jpa Vdm — g(m). Then the third equation in (1.2) is

V=Du+a«a Vdm.
’]I‘d

For |a| < 1 the right hand side of the previous equality is a contraction and so there exists a unique
solution V. However, when o = 1 this no longer the case. In fact, a further additional condition
de Dudm = 0 must hold, and existence of solutions to (1.2) may possibly fail.

Another hypothesis concerns the convexity of H in p. We suppose:

(A8) H is uniformly convex in p: there exists x > 0 such that for all (z,p,m,V) € T¢ x R? x
Pee(T?) x x(T)
2
DppH(x’p’ m, V) 2 HI’

where I is the identity matrix in R

Set
D, (H(x,p,m,V) + g(m(z))),

= Dyu(H(z,p,m, V) + g(m(z))),

~

Hgp = Dy(DypH (x,p,m,V)) (2.4)

H,
ﬁil)l‘

then we require

(A9) For all (z,p,m,V) € T? x R% x P(T4) x x(T?)

|Hyo (2, p,m, V)| < C + CHy(z,p,m,V)+6 [ |V[>dm.
Td

(A10) For all (z,p,m,V) € T? x R? x P¢(T9) x x(T%)

| Hap (i, p,m. V)P < C+ CHo(w,p.m, V) +6 | |V[2dm.
T

(A11) There exists 0 < 3 < 2 such that for all (z,p,m,V) € T x R? x P¢(T%) x x(T%)

|H,(z,p,m, V)| < C+Clp|°. (2.5)

Remark 3. Note that the case of the Hamiltonians of the form a(x)|p|* — g(m) is ruled out by
the assumptions above. However this case is handled separately in the Section 5. The relevant
assumptions are (H1) and (H2).

3 Elementary estimates

In this section we are going to prove various a-priori estimates for the solutions to the quasivari-
ational stationary extended mean-field game equation (1.2). Hereafter, by a solution to (1.2) we
mean a classical solution, with m > 0. Later we will use these estimates to prove the existence
of smooth solutions to (1.2) by the continuation method. These estimates can be regarded as
the analog for stationary problems as the estimates for the time-dependent case in [LL07a]. Our
presentation will be based upon the ideas and techniques from [GPSM12] with some modifications
to allow for the dependence of H on V.



Proposition 3.1. Assume (A1)-(A5). Let (u,m,V, H) solve system (1.2), then there exists C > 0

which does not depend on the solution, such that

[, stmyaa|.

H| < c+05/ IV 2dm.
']I‘d

mg(m)dx
Td

<CH+0Cs [ |V|*dm,
Td

and

Proof. Multiplying the first equation of (1.2) by m and integrating by parts, we get:

H = /Au+H(a:,Du,m,V)dm

= /H(w,Dmm,V) — VDudm
Td
= —/L(az,Du, m,V)dm
Td
7/[0H0(x,Du,m,V)+g(m)] dm+6/ [V|2dm + C
Td

Td

—/g(m)dm+ (C + 1) 5| |VPPdm+oC,
CA3 Td
'H‘d

IN

IN

(3.1)

(3.2)

where recall that L is given by (2.1) and we used (A5) and (A3). Here the constants ¢ and Ca3

are the constants from Assumptions (A5) and (A3) respectively.
For the opposite inequality, from the first equation in (1.2), (A1) and (A3) we have

T > Au(z) — g(m) — O—CLAJ/ V2 dm.

Integrating in x we get
— )
HZ—/g(m)dx—C—— |V |2dm.
CA3 Td
Td
Combining (3.2) and (3.3) we obtain

/mg dx</ (m )dx—i—(“—!—l)é |V|2dm + C,
C Td

(3.3)

now by noting that for both Assumptions (A2a) and (A2b) we have [, mg(m)dz > —C and

g(m) < $mg(m) + C for some constant C' > 0, we conclude

1
/g(m)dx‘§<c+ +1>5 VPdm + C,
Td Cas Td

o< mg(m)dx§2(+1+1>5/ V[2dm + C,
Cx Td

Td
plugging these in (3.2) and (3.3) yields

—(C+2+1>5 V[2dm—C<H < <C+1>5 V[2dm + C
Cas 3 Td



Corollary 3.2. Assume (A1)-(A5). Let (u,m,V,H) solve the system (1.2), then there exists
C > 0 which does not depend on the solution, such that

Ho(z, Du,m,V)dz < C+Cs [ |V|*dm.
Td Td

Proof. From the first equation in (1.2), (A1), Proposition 3.1, we have

Hy(z, Du,m,V)dx < F—l—/

2+ 1
g(m)dx+C§C+( et +2>5/ V|2 dm.
Td C Td

Td A3

O
Corollary 3.3. Assume (A1)-(A5). Let (u,m,V,H) solve the system (1.2), then there exists
C > 0 which does not depend on the solution, such that

/Ho(x,Du, m,V)dm < C + 05/ [V|2dm. (3.4)
'H‘d
Td

Remark 4. Note that Corollaries (3.2) and (3.3) control the integral of Ho(x, Du,m, V) with
respect to distinct measures. In the first one the integration is taken with respect to the measure
dx whereas in the second with respect to dm.

Proof. As in the proof of Proposition 3.1, we have

ﬁ:—/L(x,Du,m,V)deC’—

Td

g(m)dm—c/Ho(x,Du,m, Vydm +46 [ |V|*dm,
Td Td
Td

From this, using the bounds from Proposition 3.1 we get

1 2
/Ho(x,Du,m,V)dm <C+ - (c+ —|—2> (5/ [V|?dm.
C CAQ, Td
Td
O
Proposition 3.4. Assume (A1)-(A6) and let (u,m,V,H) solve the system (1.2). Then there
exists C > 0 which does not depend on the solution, such that

H¢mmlgc+c§/\wmm.
Td

Proof. Multiplying the second equation of (1.2) by lnm and integrating by parts we get the
estimate

Dm/? 1 Dm/? 1
4/ |D\/m|2dx:/ | Dm| = DmDpdegf/ |Dm| d:z:+f/ |D,H|? dm.
Td Td m Td 2 Td m 2 Td

Hence

/ |Dv/m|?dx < c/ |D,H|*dm.
T¢ Td
The result then follows from (A6), Corollary 3.3 and [, mdz = 1. O

Proposition 3.5. Assume (A1)-(A6). Let (u,m,V,H) solve system (1.2). Then, there exist
C, 6o > 0 which do not depend on the solution, such that for any § € [0,0¢] we have

/\w%mga
’]Td



Proof. Using the last equation of (1.2), (A6) and Corollary 3.3, we get
/ |V\2dm:/ |DPH\2dmgc+cA6/ Hodm +6 [ |V2dm
Td Td Td Td

<C+ [CAG (c+2+2> +1] 5/ V[2dm,
']I‘d,

C CAg

Where C 46 is the constant from Assumption (A6).
When the §j satisfies the condition

CAG c+2
|:C <CA3 + 2> + 1:| 0o < 1, (35)

then we get the desired bound. O
Combining Proposition 3.5 with Propositions 3.1, 3.4 and Corollaries 3.2, 3.3 we get:

Corollary 3.6. Assume (A1)-(A7). Let (u,m,V, H) solve system (1.2). Then, there exists C > 0
which does not depend on the solution, such that

/Td g(m)dz|, » mg(m)dz| < C, (3.6)

|H| < C, (3.7)

» Ho(xz, Du,m,V)dz| < C, andso |Dulr2eay < C, (3.8)
» Hy(xz, Du,m, V)dm’ <C, (3.9)

IvVml g1 (ray < C. (3.10)

Proposition 3.7. Assume (A1)-(A10) and let (u,m,V, H) solve system (1.2). Then, there exists
C > 0 which does not depend on the solution, such that

/ g (m)|Dm|*dx < C, / |D?ul?*dm < C. (3.11)
Td Td
Proof. Applying the operator A on the first equation of (1.2) we obtain
A2y + ﬁmm + Qﬁpkwi (, Du,m, V)ug, o, + Tr(DipH(a:, Du,m,V)(D*u)?)+
D,H(z, Du,m,V)DAu — div(¢g'(m)Dm) = 0.

Integrating with respect to m we get

/g’(m)|Dm\2dx+E/ |D2u\2dm§/ \f[xw
Td 2 Jpa Td

dm + C|H,p|>dm < C + 05/ V|2 dm,
’]I‘d

where in the last inequality we used (A9) and (A10), then Proposition 3.5 finishes the proof. [

Remark 5. Note that the previous proposition can be modified to address general local terms
g(x,m). The key point is to control the term f,ﬂ,d D.g(x,m)Dmdx in the last inequality of the
proof. This term can be absorbed in by the term de D,ng(x,m)|Dm|?dz, provided one has suitable
growth assumptions on D,g, for instance |D,g|*> < CD,,g(x,m).



Corollary 3.8. Assume (A1)-(A10) and (A2a), and let (u,m,V, H) solve system (1.2). Then,
there exists C' > 0 which does not depend on the solution, such that

mTdz < C, (3.12)
Td

and

Hy(x, Du,m,V)*dm < C, and so / |Dul*dm < C. (3.13)
Td Td

Proof. From Corollary 3.6, estimate (3.10), we know that = € H*(T%). Sobolev’s Theorem then
implies (3.12). Since Z- > 1, from (3.12) we deduce in particular that, under (A2a)

/ g(m)?dm < C. (3.14)
']I‘d

Now, using (A1) and (3.7), we have
Hy(xz, Du,m,V) < C — Au+ g(m).

Then by (A3), Proposition 3.7 and (3.14), we get
|Dul*dm < C+C | HZdm <C+C | g(m)?dm+C | |D*uf*dm <C.
Td T4 Td Td
O

Corollary 3.9. Assume (A1)-(A10), and (A2b). Let (u,m,V, H) solve system (1.2). Then, there
exists C > 0 which does not depend on the solution, such that

mT 0+ dz < O (3.15)
Td
Furthermore, if 2v +1 < %(fy +1), then
Hy(x, Du,m,V)*dm < C, and so / |Dul*dm < C. (3.16)
Td Td

Proof. Let f(z) =m™= (). From (3.6) we have

frde = | mg(m)dx < C.
Td Td
Note that
/ |Df|?dx = C/ m? Y Dm|*dx = c/ g (m)|Dm|*dx < C.
Td Td Td

Thus
[ flle < C.

The Sobolev inequality then implies
[fllzex < Clfllar < C,

which proves (3.15). In particular, if 2y +1 < %(’y + 1), then

/ g(m)?mdr = | m*Hldz<C+C [ mTOWagz=c+C | fFdx<c. (3.17)
Td Td Td Td



Using (A1) and (3.7), we have
Hy(xz, Du,m,V) < C — Au+ g(m).
Then by (A3), Proposition 3.7 and (3.17)

|Dul*dm < C+C [ HZdm <C+C | g(m)*dm+C | |D?*ul*dn <C.
'H‘d 'H‘d ']l‘d

Td

4 Additional integrability properties

In this section we continue the study of various a-priori estimates, focusing our attention in L?
estimates for m as well as Inm. This in particular, see Theorem 4.6, yields W2 estimates for w.

Proposition 4.1. Assume (A1)-(A10) and let (u,m,V,H) solve system (1.2). Furthermore,
suppose that one of the following assumptions is satisfied:

(i) (A2a);
(i1) (A2b), with 2y +1 < %(7 +1).
Then there exists a constant C' > 0, which does not depend on the solution, such that

Im|poeray < C V1< g<oo, ifd<4,
d .
M|l paeray <C V1<g< T if d > 5.
Proof. Assumption (A6), (3.13), (3.16) and Proposition 3.5 imply

/ |D,H|*mdr < C. (4.1)
Td
Multiply the second equation of (1.2) by m", r > 0, and integrate by parts:

m™ | Dm|? — m"D,H - Dmdz = 0.
Td

Then, by Young’s inequality

mT—1|Dm|2dx§/ m"| D, H||Dm|dx
Td Td

1 2r41

:/ |DpH|m%\Dm|m%m Tdx
Td

1 1 1
< / ~| D H|*m + =m" | Dm|* + ~m* Tdz.
a4 2 4
Estimate (4.1) then implies

m" Y Dml*de < C+C | m*da. (4.2)
Td Td

Remark that m"~!|Dm|? = cT|Dm%|2. By Sobolev’s Theorem, if m™s € HY(T?) then
m™ s € L (T%) and

2
* 2%
< mé(rﬂ)) < C/ chr_l\Dm|2 +m "z,
Td Td

10



where 2* = dz—flz. Then we have

2

. Fa

( m22(T+1)> <C+C | m* . (4.3)
T¢ Td

Now, if d < 4 then 27(7" +1) > 2r+1 for any r > 0, while if d > 5 the inequality is true if

r < ﬁ. Under these assumptions on r, and de m% dx < C, iterating (4.3) we conclude that
m € L1 for any ¢ > 1if d < 4. If d > 5 then

m%(”l)dm <C
Td N

2

for any r < 7=,

ie, me L forany 1 <gq< ﬁ.

Proposition 4.2. Assume (A1)-(A10). Let (u,m,V, H) solve system (1.2). Then
/ |DInm|*dx < C.
Td

Furthermore if (A2a) holds then there exists a constant C' > 0, which does not depend on the
solution, such that || Inm|| g1 (1ay < C.

Proof. Multiplying the second equation in (1.2) by % and integrating by parts as in the proof of
Proposition 3.4 we get

/ |DInm|*dx < c/ |DpH(Du,z,m,V)[2de < C + C/ Hydr < C,
Td Td Td

using Assumption (A6), and (3.8).
Now assume (A2a) holds. Integrating the first equation in (1.2), using the Jensen’s inequality,
(A1) and Corollary 3.6, we have

0> / Inmdr > —C + Ho(Du,z,m,V)dx > —C.
Td Td

/ Inmdx
Td
Then by the Poincaré inequality

2
/ | Inm|?dr < (/ lnmdx) —|—/ |DInm|*dz < C.
Td Td Td

The previous proposition can in fact be improved as we show next.

Therefore
<C.

Proposition 4.3. Assume (A1)-(A10) and (A2a). Let (u,m,V, H) solve system (1.2). Then, for
every 1 < p < oo, there exists a constant Cp, > 0 which does not depend on the solution, such that

[ P[] g1 (pay < Cp.
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Proof. We prove by induction that f; = |In m|% € HY(T?), for any k € N. For k = 1 this is
Proposition 4.2. Let [ > 1 and suppose that || fx||z1(re)y < C; for all k <[, then we have

Inm
DAl = [ ot < o2

and
1 fxll7= = / |Inm|*'da < C2.
T

We want to show that f;; € H'(T9). Let [y(2) = flz Ilz—é"ldy multiplying the second equation of
(1.2) by F;(m) and integrating by parts we get

Inm|! 1 1 1
[Inm] Dm|?dx = |nm|D D, H dx < |nm‘ Dm|?dx + = Inml|'|D,H|?dx.

2 D
Tda M Td M 2 Jpa  m2 2 Jra

Thus,

/ ookl |d:c</ Inml|'| D, H]| dx<0/ |1nm|dx+0/ nm|'Hode  (4.4)
Td

where at the last inequality we used (A6) and Proposition 3.5.
Next, from the first equation of (1.2),(A1) and (3.7), we infer that

Hy(xz, Du,m,V) < C+|lnm| —

Then, multiplying by |Inm|' and integrating
/ |Inm|'Hodz < C/ | Inm|'da 4 C/ | Inm|"*tde — / Au|lnm|' dz.
T4 Td Td Td
Integrating by parts the last term
! ! I+1 11 Dm
[Inm|'Hode < C | |lnm|'de+C | |lnm|" de+ [ Dullnm|™ ——sgn(lnm)dz.
Td Td Td Td m

The integration by parts is justified, we just observe the that for a smooth function f the identity
D(|f|P) = p|f|P~2sgn(f)Df holds both a.e. and in distribution sense.
Then, using (A3)

|1nm|lH0dx§C/ |lnm|ldx+C/ \lnm|l+1dx+C/ | Inm|' =t dx
Td Td Td Td

171|Dm|2
e e

+C |1nm\lilHodx—|—C'/ [Inm
Td Td
<C+C | |lnm|de
Td
D 2
+C/ [e|1nm|l—|—C(e)]H0dx+C/ \lnm|l_1%dx,
Td Td m

which yields

/\1nm|Hde<c/ |1nm\l+1dx+c/ | Inm|'~ 1 [Dm ‘d;c+c (4.5)

12



Combining (4.4) and (4.5) we get

In m|! Dml?
/ [ Inm] |Dm\2d:cgc/ |1nm|l+1d:r+C’/ |1nm\l*1%dx+c,
Td Td m

that is,
IDfisilzz < Cllfill72 + CIDfillz + C < Crpa.

Since |Inm|!*! = f2 € L' we have fi41 = |In m|2t! € L', then by the Poincaré inequality
[ fiv1llze < I fisallZe + ClDfisalZe < Crpa,

and this concludes the proof. O

Corollary 4.4. Assume (A1)-(A10) and let (u,m,V, H) solve system (1.2). Furthermore, suppose
that one of the following assumptions is satisfied:

(i) (A2a)
(it) (A2b), with any v >0 ifd <4, and v < 725 if d > 5.

Then there exist a constant C > 0 and an exponent r > d which do not depend on the solution,
such that |lg(m)||.+. |D(g(m))]|z> < C.

Proof. The case (i) is a direct consequence of the Proposition 4.3. For the case (ii), note that the
condition 2y 4+ 1 < Z-(y + 1) is satisfied then Proposition 4.1 implies that ||g(m)||.- < C.
To prove that ||D(g(m))| |2 < C under (A2b), observe that

|D(g(m)) 2dz = A2 / m?=2| D 2 dr.
Td Td

If 0 < v <1 then there exists a constant C' such that
m* 72 < Om™2? 4+ Cm L.

Therefore
\D(g(m))|2dz = c/ m=2|Dm|2dz + c/ m?=| Dm|2dz.
Td Td Td

The boundedness of the first term on the right hand side follows from Proposition 4.2, whereas
the second term is controlled thanks to Proposition 3.7.

If v > 1, from (4.2) in the proof of Proposition 4.1 and the first estimate in the same Proposition
we have

mT*1|Dm|2dx <C+C m?> ldx < C,
Td Td

for any r > 0, taking r = 2y — 1 we get ||[D(g(m))||L2 < C. O

Proposition 4.5. Assume (A1)-(A10) and (A2a). Then there exist ro > 0 and C' > 0 which do
not depend on the solution, such that

/ H? dz < C, (4.6)
Td mro
and .
/ —dx < C. (4.7
Td mro

13



1

Proof. Multiplying the first equation in (1.2) by r > 0, integrating by parts and using (A1)

and (3.7), we get
H Du-D |
da < pl e, m i Cd:c. (4.8)
Td T Td mrtl m"
Next, multiplying the second equation in (1.2) by ﬁ and integrating by parts, we obtain
|Dm|? D,H - Dm
/Td m"'+2 d,ﬁl? = Td de (49)

Let us sum the equation (4.8) and equation (4.9) multiplied by r:

H, Dm|? D,H — Du)-D 1 C
/ —de—i—r/ | Dm| dxg/ 7“( P u) m+nm—|— dx
T Td

am” mr+1 mr
S/ CT(‘DPH‘+|DUD|DW| _|_lnm+C’
Td mrt1 mr
2
g/ lﬂ—l—CrﬂDml +1nm—|—C
Td 2m” mr+2 "

dx

dx,
where we used (A3) and (A6). Now, let ro > 0 small enough such that ro < CrZ, then

1 H() lnm—l—C
= dx < —dzx < C.
/Td 2mTo = /H‘d mro =

and (4.6) is proven. Moreover, the previous inequalities and (A3) imply that

Og/ hm+C, <c
'H‘d

m’o

from which (4.7) follows. U

Theorem 4.6. Assume (A1)-(A10) and (A2a), then there exist ¢ > 0 and a constant C > 0
which do not depend on the solution, such that

[ullwza+a(ray < C.
Proof. Raise the inequality
|Au| < Ho(z, Du,m, V) + |lnm| + C,

to the power g + 1 with 0 < g < %, and integrate:

/ |Au|Tdr < Cq/ (HI™ + | Inm|T Y de + C,,. (4.10)
Td Td
Next from the Young’s inequality, (3.13) and (3.8), for any 0 < r < 1, we have
/ Hyrm"dx = / H¥'m"Hy "dr < / rHZm + (1 — r)Hodz < C.
Td Td Td

Hence, we can estimate [r., Hg“d:r as follows

1
r HZ 1 H
H{'de = [ Hi™?m?=%de < = [ Hg""'m? 4+ —-dx < C, (4.11)
Td Td md 2 Td m=9
if ¢ < 72, where rq is given by Proposition 4.5. Hence, from (4.10), (4.11) and Proposition
4.3, there exists a ¢ > 0 such that [|Aul[p1+qrey < C. The elliptic theory then implies that
HU||W2,1+q(’]I‘d) S C |:|
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5 Further estimates for special Hamiltonians

In this section we consider the equation (1.2) for a special class of Hamiltonians. We assume that
H satisfies the following hypothesis:

(H1) There exist a function
G: T4 x R? x P(T¢) x x(T?) — R

with
|G (x,0,m, V)|, |D,G(z,p,m,V)|* |D.G(z,p,m, V)| <C + e/ [V|2dm
Td
for some constants C, e > 0, and a twice continuously differentiable function
a:T? 5 R, witha>ag >0,

such that
H($7pam7 V) = HQ(LU,]L’I’TL, V) - g(m)a
and

2
Hofa,p,m, V) = ()2 + 6o, pm, V).

(H2) G is twice differentiable in x, p with
|DipG(3?,p, m, V)‘Qa |Da2:xG(x7p7 m, V)‘? ‘Df)pG($7pa m, V)‘ < C+ 6/ ‘V|2dm7
Td

and additionally there exists £ > 0 such that

2
D, H(x,p,m,V) > kI.

It is easy to check that there exists a constant ¢y > 0 such that if (H1) holds true for € € [0, €],
then H satisfies the Assumptions (A1)-(A7), if further (H2) holds then H also satisfies (A8)-(A10).

Theorem 5.1. Assume (H1) with € € [0,€] and (A2a). Then there exists C' > 0 such that for
any solution (u,m,V,H) to (1.2)
1
E

Proof. First note that from Proposition 3.5 we have [, |V|?dm < C, thus |D,G(z, Du,m, V)| < C
and Ho(x,p,m,V) > Cy|p|? — C for some constants Cy,C' > 0. Now multiply the first equation
in (1.2) by @) and integrate by parts:

m”

<C.

Loo(Td)

a(x) Du - Do Du-Dm  «a(x) —
\/Td WHOdZ’ = - T — ra(x) m7'+1 =+ mr (1nm —+ H)d;ﬂ
agCo |Dul*> C Du-Dm  «a(x) —
< —_— —_ = 1 H)dz.
_/Td > T () mr+1 mr (nm + H)dz
Then, using again the properties of Hy and « and (3.7), we get
C Dul? Du-D 1 C
Qo0 / [Duf? dx < / —ra(z) ALY afe)lnm + dx. (5.1)
2 Jpa m" Td mrtl m’”

Next, multiply the second equation in (1.2) by ﬁ

o dr = 0.

/ |Dm|*>  D,Ho-Dm
T

15



Using the expression of Hy, we find

. 2 .
/ o(x) Du Dmdz :/ [Dm|* DG Dmdx.
T T

mr+1 ” mr+2 mr+1

Substituting this expression in (5.1), we get

dx

o |Du|2daz N r/ IDm|2dx < TDPG - Dm N alx)lnm+C
Ta m" a m™t2 7T T g mr+1 m’

r|Dml?  a(x)lnm+C(r+1)
< — dz.
- /Td 2 mrt2 + m" *

We conclude that

2 2
o | Du| x4 f/ | Dm)| do < / a(z)lnm+ C(r + de.
Td m" 2 Jpa mrt2 Td m’

On the other hand, since a(z) > ap > 0, for any r > 0 there exists C,. > 0 such that
/ 2C(7"+1)dx S/ _a(z) lnmderCT.
Td m” Td m”
We conclude that )
Td T

for any r > 0.
Next, we have

/ a(x)lnm—FC'(T—l—l)de/ a(x)lnmdx+/ C’(r—|—1)d$
T4 {m>1} T4

m" m” m”

C, r+1
2+

a M9 mr

<C

for any § > 0. Hence, from the Sobolev inequality, (5.2) and (5.3), for any r» > 0

2
1 P
</ —= da:) <C
Td m=z" Td

C 1 1
§Cr/ 56+r+ dx +C —dx.
Ta M"T m” Ta M"

1 2

D r

mz2

Now, set 3 := \/27* >1and ¢ := %, where 3’ is the conjugate exponent of 8. Then, we have

and




We conclude that

[ L T i+ [ L ’
Td mﬁ% . - " Tdmﬁr t ’

ie.,
1 1 1
L] et 2]
M| Le2r(Td) || Lsr(Td)
Taking r» = B*~! for an integer k > 0 we get
Hl et v B .
m LBk+1(Td) m Lﬂk(Td)
Thus
S _1 = 2(k—1)
Hl SCZE ﬁ’“lﬂ; s || L ScHl <C.
MlLekt (re) Mlizy(ra) Mlizy(ra)
Sending k — oo we infer that |- | 1o (ay < C. See also [Eva03] for a similar argument. O

Corollary 5.2. Assume (H1),(H2) with € € [0, ¢o] and (A2a). Then for any solution (u,m,V, H)
to (1.2) there exists a constant C which does not depend on the solution, such that ||uly22(1ay < C.
Furthermore, if d < 3, for any ¢ > 1 there exists a constant Cy; which does not depend on the
solution, such that |ully2.q(ray < Cy.

Proof. By Theorem 5.1, there exists m > 0 such that m > m in T¢. This and Proposition 3.7
imply that

1
|D?ul?dx < 7/ |D?ul*mdx < C.
Td m Jra

Since in addition,

/qua:, /|Du|2dx§C’,
Td Td

we obtain that [ul[y22(pey < C. Because m is bounded by below and |m||p1 ey = 1 we have
Inm € LY(T%), for any ¢ > 1. If d = 2, then Sobolev inequalities imply || Du| q(pe) < Cy for any
q > 1 thus from the first equation of (1.2) we conclude |[Au| pq¢ray < Cy for any ¢ > 1. If d =3
then 2% = 6, thus || Dul| s (ray < C, hence the first equation of (1.2) implies that ||Aul|psrey < C.
This together with Sobolev inequalities yield || Dul|p¢(ray < Cy for any ¢ > 1, using the equation
again, we conclude that [|Aul|q(pe) < Cy for any ¢ > 1. O

Corollary 5.3. Assume (H1),(H2) with € € [0,¢] and (A2a), then if d < 3 for any solution
(u,m,V,H) to (1.2), there exists a constant C > 0 which does not depend on the solution, such
that ||U||W1,oo(’]1‘d) <C and HU”W:;,Z('H‘d) <C.

Proof. The first inequality follows directly from Corollary 5.2 and Sobolev inequalities if we take
g > d in Corollary 5.2. To prove the second inequality we differentiate the first equation in (1.2):

2
D(Au) = fDa% — aD*uDu — D*uD,G — G, + D(Inm)

then Corollaries 5.2 and 4.2 imply || D(Au)| g2 < C for some constant C' > 0, thus ||ul|ys.2(pe)y < C.
O

Using these estimates we will prove further regularity estimates for this case in Section 6 (see
Theorem 6.14).
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6 Improved regularity by the adjoint method

In this section we use adjoint method techniques to prove higher regularity estimates for the
solutions to (1.2). For later convenience we discuss a more general situation.

(R1) Let F: T? x R — R be a function which satisfies for some constants ¢, C' > 0:

|D,F(x,p)]* < Clp* + C.

(R2)
DyF(x,p)p — F(x,p) > C|p|2 + ((x),
with
ICllr < C,  for some r > d.

(R3) Let Fy(z,p) = Dy(F(z,p) + ((z)), then

|, p)| < C + () [pl?

with )
0<B<2 ¢eLz5(T.

Consider the equation
Aw + F(z, Dw) = 0. (6.1)

(R4) We suppose that for any solution to (6.1) we have the following a-priori bound:

||D’LU||L2(']1~d) < C.
Note that w solves the time dependent equation

w + Aw + F(z, Dw) = 0. (6.2)
For any zo € T?, we introduce the adjoint variable p as the solution of
(6.3)
p(x,0) = 0y

By the maximum principle p > 0. Furthermore by integrating the equation we get % Jpa plz,t)de =
0. In particular, for any ¢ > 0

{pt + div(D, F (z, Dw(x))p) = Ap,

/ plz, t)dx = 1. (6.4)
Td

Proposition 6.1. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then, for
any T >0

T
w(xp) :/0 /ird (F(z, Dw) — Dw - DpF(z, Dw))p(z, t)dzdt + /ﬂ‘d w(z)p(z, T)dx.

Proof. We just multiply equation (6.2) by p and integrate by parts using the equation for p. [

For fixed T' > 0, let us denote

T
ol 21 (La(da),a) :/0 Ip(, )| La(Taydt.

Denote by osc(f) = sup,, f — inf,, f, for any bounded function f: T¢ — R. Then we have

18



Corollary 6.2. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then

T
/ ] |Dw|?p(z, t)dzdt < C|lpll 1 (La(a),ar) + C osc(w),
o Jr

where q is the conjugate exponent of r defined by % + % =1.

Proof. We use (R2) and Proposition 6.1 to get

T T
/ |Dw|?p(x, t)dzdt < C osc(w) — C’/ C(z)p(x, t)dadt.
0o Jrd 0 Jrd

Now, using Holder’s inequality we have

T
| clpdede < ool g,
0

which ends the proof. O

Proposition 6.3. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then for
0 < a <1, and any 61 > 0 there exists Cs, which does not depend on the solution, such that

T T
/ |D(p?)|2dxdt < Cs, + 61/ / | Dw|?p(z, t)dadt.
0 Td 0 Td

Proof. Multiplying the first equation in (6.3) by p®~! and integrating by parts, we obtain

T
o [ [ 1D6hPdude = [ (5% 1) = (0,0)) (6.5)
o Jrd @ Jrd
+(1—a)/0 /poa—lppF(m,Dw)-Dpdxdt (6.6)

T T
<C+ 6/ |D(p?)|?dxdt + C’E/ / |D,F(z, Dw)|[*p*dzxdt, (6.7)
o Jrd 0o Jra
for any € > 0, where ¢, = %. Here we used

/pa(x,O)d:r, /pa(x,T)dxgl,
Td T4

which is a consequence of (6.4) and Jensen’s inequality. Furthermore, using that p® < Cs, + d1p
and (R1), the last term in the inequality (6.7) can be bounded as follows

T T
/ / |DpF(:c,Dw)\2pad:1cdt§Cgl—|—51/ / | Dw|? pddt.
0 Td 0 Td

For e small enough we get the result. O

Remark 6. In fact the expression p(x,t)* does not always make sense since p(x,0) = §,,. To
fiz this we consider the solution p to the equation (6.3) but with initial value n. instead of 0,
where 1. : T* — R are smooth compactly supported functions with de Ne(x)dx =1 and ne — 4.
We carry out all the computations with p* and then send € — 0.

Combining the Proposition 6.3 and Corollary 6.2 we conclude that

19



Corollary 6.4. Assume (R1)-(R/). Let w and p solve (6.1) and (6.3) respectively. Then for any
0 < a <1, and any 61 > 0 there exists Cs, which does not depend on the solution, such that

T
/ . |D(p%)[?dzdt < Cs, + C1|pl| L1 (La(dw).ar) + CO1 0sc(w),
0 T

where q is the conjugate exponent of r.

Define L o
rd=1+=—=. 6.8
Qrg - (6.8)

Since by Assumption (R2) r > d, we have a,q < 1.

Proposition 6.5. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then, for
a > g, there exists 0 < p < 1 which does not depend on the solution, such that

m

T
ol Lt (ada),ay < C (/ 5 |D(p3)|2dxdt> +C,
0

where q is the conjugate exponent of r.

Proof. Recall that for any 1 < py < p1 < 00,0 < 6 < 1 we have the following interpolation
inequality
-0
£ llzre < NN Zen 111 m0
where py is given by
1 0 1-46
— = 4+ .
P D1 Po
If d > 2, let p = 2%, where 2* is the Sobolev’s conjugate exponent of 2 given by é = % — 2% If
d = 2 we take p to be a sufficiently large exponent. Take py = 1, p1 = 5. Let ¢ be the conjugate
exponent of r. Note that if a > a,.q we have

1<q<p1.

Then for pg = ¢ we have
1
P

By Sobolev’s inequality

(/JI‘ pp;(‘r’t)f = C( o 'D(Pg)(xvt)IZd“f) [EYe)

g 2
100l oy < € ([, 0G5 0P+

Using |[p(.,t)||z1 = 1 and the interpolation we get

and so

Q=

o
10 8) | oray < C ( / d ID(p2)(a:,t)2dx> ‘e

with = . For @ > g, we have < 1. Then by Jensen’s inequality

[

T T H
ol (La(da),ae) :/0 o )l paeray < C (/0 » |D(P2)|2d9ﬂdt> +C,

where ¢ is the conjugate exponent of r. O
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Combining Corollary 6.4 and Proposition 6.5, we get

Corollary 6.6. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then, for for
a > apq and any 61 > 0 there exists Cs, such that

T
/ |D(p?)|>dzdt < Cs, + C6, osc(w).
0 Jrd

Furthermore, using this with Proposition 6.5 gives

Corollary 6.7. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then, for u
as in Proposition 6.5
ol (a(da),ar) < C + Close(w))”,

where q is the conjugate exponent of r.
Finally, from Corollaries 6.2 and 6.7, we infer

Corollary 6.8. Assume (R1)-(R4). Let w and p solve (6.1) and (6.3) respectively. Then
T
/ |Dw|?p(z, t)dzdt < C 4 C osc(w).
o Jrd

Proposition 6.9. Assume (R1)-(R4). Let w solve (6.1). Then Lip(w) < C.

Proof. Let n = D,,w, then it satisfies the equation

~

e + DpF(x, Dw)Dn+ An = —F,, (x, Dw) + Dy, (C).
Take ¢(t) to be smooth with ¢(0) =1 and ¢(T') = 0. Let v = ¢n, then it satisfies
vr + DyF(z, Dw) - Dyv + Av = —¢Fy, (2, Dw) 4+ ¢Dsy, (¢) + ¢' Dy, w.

Integrating with respect to p

T
~v(e0,0)= [ [ =6Fuip+0Do(C)p+ o' Drywpduct.
0 T

Using that |D,,wp| < e|Dw|?p + C.p for small € > 0

T T
o0, 0)] < / / CIBo|p + Cp + Ce| Dwl2pdudt + / Dm<<>pdx]dt. (6.9)
0 Td 0

Td

The first term in the right-hand side of (6.9) can be estimated using (R3) and Corollary 6.7:

T T T
/ / | Fy, | pdz §/ / Cp + | Dw|® pdx §/ Cp+C’€1/J2%ﬁp+5|Dw|2pdx
o Jra o Jra 0 Jrd

2 T
< C+ Collpllor goamyan 1172 +e / / |Dw[pdz (6.10)
Lz2=p 0o Jrd

2

T
< C+C(0sc(w))“+5/ | Dw|*pdz.
o Jrd
Let us now estimate the last term in the right-hand side of (6.9). We have

2 —a «
[, Da@ptz == [ cDtorte =2 [ G0, (5 o
Td Td a Jrd
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Thus
T T T
/ | [ D..(C)pdzx|dt < c/ / C2p2’o‘dxdt+C’/ |D(p™/?) | dedt.
0 Td 0 Td 0 Td

We estimate the first term of the previous inequality as follows

[0 185 1P sy = 161 2 o,
Then by Sobolev inequality and (6.4)

2
Il 250 5y < CIDG) gy + C- (6.11)

If d > 2, choose now o > ¢ so that (2 a)T < 2—0‘ = d%dQ. In dimension 2 replace in the previous

condition 2* by a sufficiently large p. Note that such choice is possible since for a = 1 we have
5 < ﬁ. Using interpolation we get

207
loll e oy < Iol5GRulo1 P < CUDE ) S0y + C. (6.12)
where 6; is defined by (2 Q)T = % + 2251. As ¢ — 1 we have 0; — g. Then if o > a,q
sufficiently close to 1 we have
2—a)f
Q@
Then, using Jensen’s inequality we get
T T (2=a)6;
/ [ D(O)pdaldt < c/ ( |D(pa/2)|2) + 08, osc(w) + C
0 T4 0 Td
. @=a)y (6.13)
<C (/ |D(p(5)|2dxdt> + 06 osc(w) + C.
0 JTd

Note that we can choose xg and 7 such that
Lip(w) < d|v(zg,0)| = d| Dy, w(xg)]-

Then combining the inequalities (6.9), (6.10) and (6.13), Corollaries 6.6 and 6.8, and using
osc(w) < CLip(w), we obtain

Lip(w) = sup d|v(zg)| < C+ C(e+ 61)Lip(w) + (C + C'Lz'p(w))%Tae1

zo€eTd
choosing ¢, d; small and since 277“01 < 1, for « close enough to 1, we obtain the result. O

Corollary 6.10. Assume (A1)-(A11). Let (u,m,V,H) solve the system (1.2). Assume further
the a-priori bounds ||g(m)||Lr < C for r > d. Then there exists a constant C' > 0 which does not
depend on the solution, such that ||ully2.rpay, |[ullw1.eo(pey < C.

Proof. The property |[ully1, ey < C follows from Proposition 77, estimate (3.8) and the fact
that

F(l’,p) = H(xvpvm(x)7 V(CE)) -H
satisfies the hypothesis (R1)-(R3) with ((z) = g(m(x)) + C, as we show now.
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Let us check (R1). Using Assumptions (A5), (A6) and Proposition 3.5, we get
H(z,p,m,V)=—L(z,p,m,V)+ D,H(z,p,m,V)-p
< —cHy(z,p,m,V) — g(m)+ C + %\DPH(x,p, m, V)|? + C|p|?
< —cHoy(x,p,m, V) — g(m) + cHo(z,p,m,V) + C|p|* + C
= Clp|* — g(m) + C.
This and (A1) imply that
Hy(z,p,m,V) < Clp|* + C,

and then, by (A6) that
|D;DH(‘T7p,ma V)|2 S CV|p|2 + C7

ie., F(z,p) = H(xz,p,m(z),V(x)) — H satisfies (R1). The property (R2) is a consequence of (A5)
and Proposition 3.5. Assumption (A11) and estimate (3.8) imply (R3).
Once we know that [|ullyy1.0(pay < C, from the first equation of (1.2) and [H| < C, we infer
that
[Au| < [g(m)| + C.

Since by assumption ||g(m)| - < C, from the elliptic theory we get [ul|y 2.4y < C. O
The next Corollary generalizes the result in Corollary 5.3.

Corollary 6.11. Assume in addition to the hypothesis of Corollary 6.10, that ||D(g(m))||r2 < C.
Then there exists a constant C > 0 which does not depend on the solution, such that ||ul|ys,2(re) <

C.
Proof. We have
DAw = —D(H(z, Du,m,V)) = —H, + D(g(m)) — D*uD,H
which combined with the Corollary 6.10 and Assumption (A11) gives |[[DAul|z2(rey < C, hence
[ullwsz(rey < C. O
Combining this with the Corollary 4.4 we get:

Corollary 6.12. Assume (A1)-(A11). Let (u,m,V,H) solve the system (1.2). Furthermore,
suppose that one of the following assumptions is satisfied:

(i) (A2a)
(it) (A2b), with any~y >0 ifd <4, and v < 725 if d > 5.

Then there exists a constant C > 0 which does not depend on the solution, such that
Hu”wl,oc(']rd), ||/U/||W2,T(Td)’ ||’u||W3,2(Td) S C.

Corollary 6.13. Let (u,m,V, H) solve the system (1.2). Assume either

A. (A1)-(A11) and one of the following assumptions is satisfied:

(i) (A2a)
(it) (A2b), with any~y >0 ifd <4, and v < 75 if d > 5.

or

B. (H1),(H2) holds with € € [0, €], (A2a) and d < 3.
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Then there exists a constant C > 0 which does not depend on the solution, such that
H lanWl,oo('ﬂ-d) < C.

In particular there exists a uniform constant m > 0 which does not depend on the solution, such
that m > m. Furthermore, for any q > 1 there exists a constant Cy > 0 which does not depend on
the solution, such that

llullw2.acray, |mllw2amey < Cq.

Proof. Take any r € R multiply the second equation of (1.2) by m”", r # 0, or by Inm for r =0
and integrate by parts:

m" " Dm|* — m"D,H - Dmdz = 0,¥r € R.
Td

Then using Corollaries 6.12 or 5.3 and Hoélder’s inequality:

1 1

3 3
m" Y Dm|*dx < C/ m”|Dm|dx < C </ mr1|Dm2dz> ( mr+1dx> ,
T4 T4 T4 Td

thus

cr/ \Dm%ﬁdx:/ m"HDmPde < C [ m"da. (6.14)
Td Td Td

r 2 T
Note that ¢,m" = Dm|* = |Dm# |? with ¢, = 417 By Sobolev’s Theorem, if m %

1
then m™ 2" € L2"(T%) and

€ H'(T?)

2
* 2%
< mzz(’"*l)) < C’/ crm™ Y Dm|* + m " de,
Td Td

where 2* = %. Then we have

2
. 7
( m22(r+l)> <C(r* + 1)/ m"da.
’]I‘d

Td

Thus for any r > 0

(/w mﬁr) <O(r?*+1) [ m'da, (6.15)

Td

1\7 1
) < 2 —dz. )
(/Td mm) <C(r +1)/1rd mrdx (6.16)

where § = 27 > 1. Since de mdx = 1, arguing as in the last part of the proof of Theorem 5.1,
from (6.15) we get |[m|| Lo (ray < C.

Next, if (A2a) holds, then by Proposition 4.5 we know that there exists 7o > 0 such that
de ﬁdm < C. Hence, again arguing as in Theorem 5.1, from (6.16) we get H%HLW(’]W) <C.

In both cases A and B the Lipschitz estimates on u from Corollaries 6.12 and 5.3, and the
estimates just proven imply that ||Aul|pe sy < C. In particular

and

lullw2.a(rey < Cy  for any ¢ > 1.
Now, let us show that || log m|[yy1.00(7ay < C. The function v = logm is solution of

Av 4+ |Dv|* = b(x) - Dv — ((x) = 0,
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where b(z) = D, H(x, Du,m,V) and ¢ = div(b). By Proposition 4.2, we know that ||Dv||p2 ey <
C. Moreover, the W24 estimates on u and (A10) imply that D, (b), ¢ € L(T%) for any ¢ > 1.
Hence, the Hamiltonian F(z,p) = |p|?—b(x)-p—((z) satisfies Assumptions (R1)-(R3). Proposition
77 then gives Lip(v) < C. In particular, from || log m|| o (p¢) < C we infer that there exists m > 0

such that m > m. Moreover, the estimates HDTT”HLOO(W) s Im| oo (ray < Cimply [|[Dm|| oo (pay < C.

Finally, from the equation for m
Am = bDm + div(b)m,
and the estimates just proven we get ||m/||yy2.a¢1e) < Cy for any ¢ > 1. O

Theorem 6.14. Let (u,m,V, H) solve the system (1.2). Assume either
A. (A1)-(A11) and one of the following assumptions is satisfied:
(1) (A2a)
(ii) (A2b), with any v >0 ifd <4, and v < 7 if d > 5.
or
B. (H1),(H2) holds with € € [0, €], (A2a) and d < 3.

Then there exist constants Cy, 4 which do not depend on the solution, such that
lullwe.acray, |mllweacray, |V IIweara gay < Crq for any ¢,k > 1.

Proof. Corollary 6.13 gives ||m/| w1 < C and |Jullyzq < C, for every 1 < ¢ < co. Differentiating
the first equation in (1.2) yields

DAw = —D(H(z, Du,m,V)) = —H, + D(g(m)) — D*uD,H is bounded in L¢

thus [Jullws.q < Cs,4 for all 1 < ¢ < cc.
Therefore, from assumption (A4) and the second and third equations of (1.2), we get ||m/||y2.q,
IV lwzae < Caqforall 1 < g < oo. A bootstrap argument completes the proof of the theorem. [

7 Existence by continuation method

To prove the existence of smooth solutions to (1.2) let us write it in an equivalent form
Am — div(D,H(xz, Du,m,V)m) =0
Au+ H(z,Du,m,V)=H
V =D,H(z,Du,m,V),

and consider a parametrized family of Hamiltonians:

p*

o, V) = Mo, V) + (1= ) (1

s}, 0<A<1
with the corresponding system of PDE’s:

Am,\ — diV(DpH)\(LU, DU)\,m)\, V)\)m)\) =0
Auy + Hy(x, Dux,my, Vy) = Hy

V)\ = DpH,\(aU,Du,\,mA,V,\) (71)
de uxdr =0
Jpa made = 1.
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First let us start with some notation and hypothesis. Let
H¥TIR)={f¢ H’“(Td,R)|/ fdr=0}.
Td

Consider the Hilbert space F* = H*(T4 R) x H*(T¢ R) x L*(T? R?) x R with the norm
e = 1007 ra ey + 1 Wk ra gy + WL e ey + RJ2,

for w = (¢, f,W,h) € F¥. We assume that H can be extended from the space x(T¢) to the space
L?(T?,R%). Note that by Sobolev’s embedding theorem, H is well defined on the set of positive
functions m € H*(T¢,R) with big enough k. We denote this set by H¥ (T4, R), it is well defined
for large ks and is an open subset in H*(T¢,R).
For apoint I = (z,p,m,V) € T!xR¥x H¥ (T4, R)x L*(T%,R?) we define A?\J: RY — R, BQ,I: RY —
R? by

A())\J(w) = D,H)(z,p,m,V)w, Bg7l(w) = DIQ,pH,\(x,p,m, V)w,

AL HH(T?R) — R, By ;- H*(T%,R) — R by

Ai,](f) = DmH)\(x,p,rm V)(f) + g’(m(x))f(x) B;,I(f) = DimH)\(quvma V)(f)?
and A%\J: L?(T¢,R%) — R, Bi[: L?(T?, R?) — R? by
A3 (W) = Dy Hy(z,p,m,V)(W), B3 (W)= D2, Hx(z,p,m,V)(W).

In principle .A}\ ;(f) is only defined for a smooth f, but we are implicitly assuming that the
term ¢'(m(x))f(z) cancels a corresponding term in D, Hx(p,z, m,V)(f), as will be required in
hypothesis B2.

The following hypothesis are quite technical. However we have worked out in detail general
examples in Section 8, where these are checked explicitly.

(B1) We assume that for (p,m,V) € R? x HE(T4 R) x L*(T?,R?) we have H(z,p,m,V) €
H*(T4,R) for every k big enough. Note that for big k ( k > d), m € HY (T R) implies
g(m) € H*(T4,R).

We further assume that H(x,p, m, V), Df)pH(x,p, m, V), Dme(m,p, m, V') are continuous in
m with respect to the uniform convergence, and in V with respect to the convergence in
L*(T4,RY). We assume H(x,p,m,V) and D,H (x,p,m,V) have Fréchet derivatives in V,
thus the operators A3 (W), B3 ; (W) are well defined.

(B2) We assume that for any f € H*(T¢,R) and W € L?(T% R?) the functions AL (), By (),
A3 (W), B} ; (W) are smooth in z and p.

(B3) For any positive integer [, any point (m,V) € HE(T% R) x L*(T% R?) and any number
R > 0, there exists a constant C (I, m,V, R) such that

DL, AN DL B < CUm,V,R)||fll= Vf € L*(T%,R), for all z € T, |p| < R,
and

DL AZ(W)[,|DL,B(W)| < C(I,m,V,R)|W||r2 YW € L*(T*RY), for all z € T, |p| < R.
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Because of the structure of H) it suffices to check that both (B2) and (B3) hold when A\ = 1.
Thus for a point (P,m, V) € C°°(T?, R%) x C*>(T?, R) x L(T%, R?), we can define the operators
AL By HF(TY,R) — C>=(T4,R) by

AN (@) = A5 1) (f), and BY(f)(x) = BX 10 (),

where I(z) = (z, P(z),m, V).
Similarly, we define the operators A3, B3 : L?(T?¢,R?) — C>(T%,R?) by

Ai(W)(l") = A?\,I(I)(W% and B,Z\(W)(x) = B?\,I(z)(W)-

(B4) We assume further that the linear mapping Id — B3: L*(T¢,R%) — L?(T%, R?) is invertible.
Since B3 = A\B%, it is sufficient for the invertibility of Id — B% to have ||B?||12_ 12 < 1.

We consider now the linearization of (1.2) at the point (\g, I,) in the direction (1, f, W, h)

Af —div (Vi f) — div [(B&O,UU (DY) + B, 1, (F)+ B, 1., (W)) m,\o} —0
Aw * ARO’IM (Di/)) + A}\O,Ixo (f) o gl(mAO)f + AiOJAO (W) -h=0

W= Bgo,ho (DY) + B}\U,IAO (f) + 3,2\0,1&J (W), (7.2)
Jpa¥dz =0
Jpa fdz = 0.

Where I, (z) = (z, Duy,(x), m,, Vi, ). Multiplying the second equation by f and subtracting the
first equation multiplied by 1 and integrating by parts we get:

0= [ AL, () = 8 () 2+ £, 1, 0y (V) = DSBS, 1, (D)

—mx,DYBy, 1, (w)(f) = ma, DYBS, 1, (o) (W)]de,

(7.3)

where we used Agoyho(m)(Dw) = Vi, Dy(z).

For a point I(z) = (z, P(z),m,V) where (P,m,V) € H*(T* R%) x HE (T4 R) x L?(T¢ R?)
we define Hy ;: H*(T4,RY) x H*(T¢, R) x L?(T¢,R%) — R by

Ho (@ W) = [ [mQBY,100(Q) + mQB} s () + (m)
= FAN 12y () +mQB 10y (W) = FA 10y (W)]da.

Note that Ho(Q, f,W) = [za m|Q|* + ¢'(m)| f(z)|?dx and H = (1 — A)Ho + AHy.

(7.4)

(B5) We suppose that there exists a constant C' such that for any I(x) = (z, Du(x), m, V), where
(u,m,V, H) is a solution to (7.1), and for all A € [0, 1]:

H)\J(Qufv W) > 9/]1‘«1 m|Q|2 + |f(£[')‘2 - C(W - Bg,l(x)(Q) - B}\,I(z)(f) - Bi,[(m)(W))de

This condition holds when A\ = 0.

Let
Ff = g*(T% R) x HY (T R) x L*(T% R?) x R,

by a classical solution to (7.1) we mean a tuple (ux,mx, Va, Hy) € (| F}.
k

Theorem 7.1. Assume the Assumptions (B1)-(B5) hold. Furthermore, suppose that either
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A. (A1)-(A11) and one of the following assumptions is satisfied:

(i) (A2a)
(ii) (A2b), with any~y >0 if d <4, and v < 75 if d > 5.
or
B. (H1),(H2) holds with € € [0,¢€0], (A2a) and d < 3.
Then there exists a classical solution (u,m,V, H) to (1.2).
Proof. For big enough k we can define E: R x Ff — F*=2 by
Am — div(D,Hy(z, Du, m,V)m)
~Au+ Hy(x, Du,m,V)+ H

V — Dp,Hy(x, Du,m,V)
— Jramdr +1

E\u,m,V,H) =

Then (7.1) can be written as E(\ ux,my, Vy, Hy) = 0. The partial derivative of E at a point
vx = (ux,mx, Va, H)
Ly = DyE(\vy): F¥ — FF=2,

is given by
A () — div(Va(2) f(2)) — div(BY;, o (D(@)) + BL 1. o) (F) + B2 1. oy (W)]ma ()

—AB() — A o (DY) = ALy () + g (mas (2) f @) — A2y 0y (W) +
W(z) - Bg,lk(x) (D(x)) — B}\,Ik(x)(f) - Bi,b\(m)(w)

= Jra

Lx(w)(x) =

where I(z) = (Duy(z),,my, Vy) and w = (¢, f, W, h) € F*. Note that Ly is well defined for any
k> 1.
Note also that for a classical solution (uy,my, Vx, Hy) to (7.1), we get from the third equation
that V) € (] Fx. Define the set
k

A={) 0<\<1,(7.1) has a classical solution (ux,mx, Vx, Hy) }.

Note that 0 € A, with (ug,mo, Vo, Ho) = (0,1,0,—g(1)). Our purpose is to prove A = [0, 1].
Let Ap € [0,1], A — Ao. It is easy to see that the Assumptions (A1) — (A11) for H imply the
corresponding properties for H, with uniform constants for any A € [0, 1]. Thus the results of the
previous sections (Theorem 6.14) and Sobolev’s embedding theorems imply that we can bound
uniformly derivatives of any order of the solutions wuy, ,my,, and also the C! norm of Vy,. Thus
we can assume that there exist functions u,m,V and a number H, such that uy, — u,my, — m
in H'(T9) for every integer [, and hence in C!(T¢) for every [, and also Vi, — V in L?(T¢) and
H),, — H. Passing to the limit in (7.1) for A\ = )\, and using Assumption (B1) we get that
(u,m,V, H) is a classical solution to (7.1) for A = A\g. From my, > m we have m > 0. This proves
Ao € A, thus A is closed. To prove that A is open we need to prove that £ is invertible in order to
use an implicit function theorem. For this let F' = F'. For w;,ws € F with smooth components
we can define

B,\[wl,wg] :/ Wa -£>\(w1).
Td
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Using integration by parts we have for wy, ws smooth,

By [wy, wa] = /Tr [MABS 1, (o) (D¥1) D2 + mAB) 1, () (f1) D2 + mABS 1 () (W1) Dips
)\ I (z) (Dz/’ ).f1 AA I (z) (D¢1)f2 +g'(mx)fifa - A)\ I (z) (fl)fZ (7.5)
“4)\ D@ (W) fo+ D1 Dfo = D fiDipg + hy fo — ho f1 + WilWs
= BY 12y (D1)Wa = B) 1 () (F)Wa = B 1, 2y (W1) Wa) da.
This last expression is well defined on F' x F. Thus it defines a bilinear form By: F x F' — R.
Step 1. B is bounded | By[wi, ws)] < Cllwn|pws]].
We use the Assumption (B3) and Holder’s inequality on each summand.
Step 2. There exists a linear bounded mapping A: F — F such that By[wy,ws2] = (Awy, ws)F.

For each fixed element w € F, the operator w; — By[wy,w] is a bounded linear functional on
F; whence the Riesz Representation Theorem ensures the existence of a unique element v, € F
such that
Blwy,w] = (v1,w)p, for all w e H.

Let us define the operator A: F' — F by Aw; = vq, so
By|wy, ws] = (Awy,we) (wy,wy € F).
It is easy to see that A is linear. Furthermore
[ Awi || = (Awr, Awr) = Bx[wi, Awi] < Cllwi ||| Aw: | -

Thus ||[Aw;||F < C|lwi]|F, and so A is bounded.
Step 3. There exists a positive constant ¢ such that || Aw||rp > c||w||r for all w € F.

If the previous claim were false there would exist a sequence w,, € F with |lw,||r = 1 such
that Aw, — 0. Let w,, = (¥n, fn, Wa, hy) and w,, = (0,0, W,,,0) where

Wn(iﬂ) =Wy (z) - Bg,I,\(r)(D/wn(x)) - B/l\,I,\(z)(f’ﬂ) - B,Z\,IA(I)(Wn)-
Assumption (B3) gives ||[W,||r < C|lwy||r = C, thus we have
[Wall72 = Balwn, W] = (Aw,, 1@,) — 0.

Hence W,, — 0 in L2. Let now @, = ({n, fn,0, hy) then, using Assumption (B5),
_C”WnH%2 + 9/ m|Dwn|2 + |fn|2dx S H)\,IA(DwnvfnaWn) = B/\[wn7wn] — 0.
'JI‘d

Thus ¥, — 0 in Hé and f, — 0 in L2. This, combined with W, — 0, implies W,, — 0. Taking
Wy, = (fr. — [ fn,0,0,0) € F we get

[ ADEE B (D) Do+ maBY 1 () D+

mABi,IA(x)(Wn)Dfn + A())\,Ix(x)(Dfn)fn]dx = Blwn, Wn] = (Awn, Wn),

using the expressions for Agy I (2)’ BO Assumption (B3) and Cauchy’s inequality we get

A(z)?

1 y
SIDFullZcrny = € (1D%nla sy + 1 Falba sy + IWallfamags) ) < —(Awa,1bn) 0,
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were C depends only on uy, my, Vx and Hy, thus since D, fr, W,, — 0 in L? we get that f,, — 0
in H'(T%). Now taking @ = (0, 1,0,0) we get

/W (= AR 13 () (D) +g (M) = A 1, () (fn) = AR 1 (o) (W) dvt- Py = Bluwg, ] = (Awy, ) — 0,

using the expressions for A9\7 In(z)’ 337 ) the Assumption (B3) and the fact that D, f, W,, —

0 in L? we get h,, — 0. We conclude that w,, — 0, which contradicts with |jw,|r = 1.
Step 4. R(A) is closed in F.

If Au, — w in F then c||up, — um|r < ||Atun — Aupllr — 0 as n,m — oo. Therefore u,
converges to some u € F, then Au = w this proves that R(A) is closed.

Step 5. R(A)=F.
Suppose R(A) # F, then since R(A) is closed in F' there exists w # 0 such that w1 R(A) in
F. Let w = (¢, f, W, h), take w = (¢, f, W, h) where W is given by
W (2) = By 1, (2) (D¥(2)) + B 1) () + B?\,Ix(z)(W%

such W exists since the operator Id — B3 is invertible. Then
0= (AIZ),UJ) = Bk[wvw} = H}\,I)\ (f7 DQ/J, W) Z 0/ ﬁl|D1/f|2 + |f|2dl’
Td

thus ¢» =0, f = 0. Then, let @w = (0,0, W, 0) where we take
using the invertibility of operator Id—B3. This gives ||[W||2, = By[w0, w] = (4w, w) = 0. Choosing
now w = (0,1,0,0) gives h = By[w,w] = (Aw,w) = 0. Thus w = 0 and this implies R(A) = F'.

Step 6. For any wy € F° there exists a unique w € F such that B\[w, @] = (wg,w)po for all
W € F. This implies that w is a unique weak solution to the equation Ly(w) = wg. Then regularity
theory implies that w € F? and Ly(w) = wq in the sense of F2.

Consider the functional @ — (wg,@W)po on F. By Riesz representation theorem, there exists

w € F such that (wg,®)po = (w, W) r now taking w = A~ w we get

Blw,w] = (Aw,0)p = (w, W) = (wo, W) po.

Let w = (’(/J7 f7 W h) and wo = (w()) f07 WOa h0)7 taklng w = (QZ% 07070)7 (07 f707 O)a (0707 W7 0)7 and
(0,0,0,1), we get, respectively,

/Td mABY 1 2y (DY) DY + maB) 1 (o) (f) DO +maB3 1, (o) (W)Dp + fVADY — Df Dy = /Td Yo
(7.6)

[0 (DO +g )7 = AL, (1]
B i o ) (7.7)
~ & 1y (W) + DUDF +hflin = [ o

WW =B 1 (o) (DOW = B 1, oy (W = B (W)W = | WW,

Td Td
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and
— f=ho.
Td

Since we can take ¢, f € H' (T4 R) and W e L?(T?,R%) arbitrarily, we get

W(x) = B 1,(2) (DY) + Bi,h(x)(f) + Bi,b\(x)(w)

then the equation (7.6) gives that f is a weak solution to

Af = div(Vaf) — div(Wma) = tho

and(7.7) means that v is a weak solution to

AY + Ay 1, (0) (DY) + A 1 ) (F) = ' () [+ A3 1, oy (W) = b= fo.

The last equation gives Ay € L? thus ¢ € H?, then the equation for W yields that W € H! and
the equation for f gives Af € L? hence f € H2. We conclude that w = (3, f, W,h) € F? and
Ly(w) = wo.

This implies that £ is bijective operator from F2 to FO. Then £} it is injective as an operator
from F* to F¥~2 for any k > 2. To prove that it is also surjective take any wy € F*~2, then there
exists w € F? such that £y (w) = wp. Using a bootstrap argument like the one in the proof of the
previous lemma we conclude that in fact w € F¥. This proves that £y: F* — F*~2 is surjective
and therefore also bijective.

Step 7. Ly is an isomorphism from F* to F¥=2 for any k > 2.

Since we have £: F¥ — FFk=2 is bijective we just need to prove that it is also bounded. But
that follows directly from the Assumptions (B2), and (B3).

Step 8. We now prove that the set A is open.

Indeed for a point A\g € A we have proven that the partial derivative £ = Dy E()\g,vy,): F¥ —
Fk=2 i5 an isometry for every k. Hence by the implicit function theorem (see [Die69]) there exists
a unique solution vy € F_{f to E(\,vy) = 0 for some neighborhood U of A\g. By the uniqueness
these solutions coincide with each other for all k, thus there exists a solution vy which belongs to
all F f, hence is a classical solution. Thus we conclude that U C A, which proves that A is open.
We have proven that A is both open and closed, hence A = [0, 1]. O

8 Examples

8.1 Velocity independent Hamiltonians

In this section we consider an Hamiltonian that does not depend on the velocity field:
H: T x R? x P(T?) — R.
And we assume that it can be extended to a function
H:T?xR?x H(T%R) — R.
The system (1.2) in this case is

{Au(z) + H(z, Du(z),m) = H (8.1)

Am(z) — div(DpH (x, Du(z), m)m(z)) = 0.
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Let )
Ipf*

Hy(xz,p,m) = AH(xz,p,m) + (1 — X) [ 5

g(mﬂ . aefo)

and consider the corresponding equations

{Aux(z) + Ha(z, Dux(x),my) = Hax (8.2)

Amy(z) — div(DpHx(z, Dux(z), ma)ma(x)) = 0.

(C1) We assume that functions H(x,p,m), D}, H(x,p,m), D3, H(x,p,m) are continuous in m
with respect to the uniform convergence.

(C2) We assume that for any f € H*(T? R) the functions
Dy H(x,p,m)(f) + ¢ (m(x))f(x) and D2 H(x,p,m)(f), are smooth in z and p.

(C3) For any positive integer I, m € Hﬁ(Td,R) and any number R > 0, there exists a constant
C(l,m, R) such that

|DL (D H (2, p,m)(f) + g (m(2)) f ()] < CUm,R)|fre,

and
|D. (D}, H(z,p,m)(f)]| < C(,m,R)| |,

for all z € T4, |p| < R and f € L*(T%,R).
(C4) There exists § > 0 such that for any (uy,my) solution to (8.2), and any (Q, f) € H*(T?, R%)x
H*(T4,R) we have
/d[mx(ﬂf)Q(w)DﬁpH(% Dux (@), mx)Q(«) +ma(2)Q(x) Dy, H(x, Dux(x), ma)(f)
T

— f() Dy H(z, Duy(x), my)(f)]de > H/Td mx|Q? + | f(2)|* dx.

Theorem 8.1. Assume the Assumptions (A1)-(A11), (C1)-(C4) hold. Furthermore, suppose that
one of the following assumptions is satisfied:

(1) (A2a)

(it) (A2b), with any~y >0 ifd <4, and v < 725 if d > 5.
Then there exists a classical solution (u,m, H) to (8.1).
Proof. We just need to check Assumptions (B1)-(B5) so that we can apply Theorem 7.1. For a
point I = (z,p,m) € R? x T? x HE (T ,R) we have A?\)I: R? — R,B?\’I: R? — RY, given by

A())\,I(w) = )\DpH(QS,p, m) cw A+ (1 - )‘)p T w, Bg,[(w) = ADZPH(.T,p, m)w + (1 - A)wa

A\ 1(f) =MD H (@, p,m)(f) + g/ (m(2)) f(x)],  Bx ;(f) = ADp, H(x,p,m)(f),

and since there is not velocity field: A3 ;(W) = B3 ;(W) = 0. From this Assumption (B4) holds
automatically. Assumptions (B1)-(B3) then follow easily form Assumptions (C1)-(C3). For a
point I(x) = (x, Dux(x), mx, V) where uy,my is a solution to (8.2) we have

Ha1(Q, [, W) = /Td [MAQBS 1) (Q) + mAQB), 10y () + ¢’ (ma) f* = fA 10 (f)]de
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Note that because H, ; does not depend on W, it is enough for the Assumption (B5) to hold to
check that

Har(@ £ W) 20 [ malQP + |f(a) P (53)
We have 7’[)\7](Q, 1, W) = /\HLI(Q, 1 W) + (1 — )\)7‘[07](62, 1 W), and

Mo (Q W) = [ malQP + ma)| () > 60 | malQfF + |f(a) P

since for any solution (uy,my) to (8.2) my € [m, C] and g is strictly increasing so g'(my) > 7o for
some constant 1y > 0, and we take 6y = min{1,70}. Then it is enough to check the condition 8.3
just for A = 1. Hence the condition (8.3) is equivalent to

Hi1(Q, f, W) = /Td [ma(2)Q(x) Dy, H (2, Dux(x), ma)Q(x) + ma(2)Q(x) Dj,,, H (x, Dux(z), m)(f)
— H@)DH (e, Dus(a)m) (e > 0 [ QP + 11w .

that is (C4). O

Note that the Assumption (C4) can be interpreted in some sense as a operator inequality

analog to the condition
2 172
[ mDy H 5D, H

1D2 H -D,H } 2 01,

obtained by Lions for the uniqueness of mean-field games with local dependence (see [Guell]).
In the present paper Assumption (C4) is used in order to apply the implicit function theorem,
and as such can be regarded as a local uniqueness condition.

8.2 Velocity dependent example

In this section we consider the following type of Hamiltonians:
H(z,p.m,V) = he.p) + ap [ Vimdy = gm). (8.4)
Td

Where h : T¢x : R — R satisfies the following assumptions

(D1) h is smooth in z,p.

(D2) [p> < C+ Clhl.

(D3) p-Dyh —h >ch—C.

(D4) |D,h|* < C + Ch.

(D5) D h > o1, for some o > 0, where [ is the d-dimensional identity matrix.
(D6) |D2,h|, |Dm h|? < C+ Ch.

(D7) h < C+Clpl2.

(D8) |D.h| < C+ Clp|?, with 0 < 8 < 2.
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For some constants ¢, C' > 0. We have

Ha(,p,m, V) = ha(,p) + Aap / Vindy — g(m), A€ [0,1]. (8.5)
']I‘d

where hy(z,p) = Ah(z,p) + (1 — )\)%.
Theorem 8.2. Assume the Assumptions (D1)-(D8) hold. Furthermore, suppose that one of the
following assumptions is satisfied:
(i) (A2a)
(i) (A2b), with any v >0 if d <4, and v < ﬁ ifd > 5.
Then there there exists ag > 0 such that for any a,|a| < ag there exists a classical solution

(u,m,V, H) to (1.2).

Proof. Assumptions (D1)-(D8) imply easily (A1)-(A1l) with 6 = "‘72, so it is enough to check the
Assumptions (B1)-(B5). Assumption (B1) easily follows from (8.4). Now we proceed to checking
Assumptions (B2)-(B5), let I = (z,p,m,V) € T¢ x RY x HY (T, R) x L*(T% R?), we have:

Ag71(w) = Dphx(z,p) - w+ A /’er Vmdy - w, 39\71(10) = Dpphrw,

A =dap- [ Vidy BLy(p=da [ Via

d

A (W) = ap - | Wmdy, BY/(W) =X | Wmdy.

For a fixed f € H*(T9,R) and W € L?(T% R?) the functions AL (), By (), A3 (W), B ;(W)
do not depend on x and are either linear in p or a constant. For all x € T?, |p| < R, we have

AX(F)] < Rlaf

/ Vfdy] < Rlal[Vl| x| Lo gran
'H‘d

[ D[ ANHII < o

[ via] < jallViiees s

BA(NI < o

L vs] <10tV o

[AX(W)| < Rlof

[ wmas] < Rlalimlzscon W oo

| Dp A5 (W)] < |

[ wmas) < lallmloeo W laces

[BX(W)| < o

[ wmds| < Blallml oo [Wlsaces

So the Assumptions (B3), (B2) hold.
To check Assumption (B4), take a point (P,m,V) € C*(T%,R?) x C>(T4, R) x L*(T¢,R?),
the operators AJ, Bi: H*(T4,R) — C>(T% R) are given by

Vidy, BL(f)(x)=a / Vidy,

Td

AL(f)(@) = AaP(z) - /

Td
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where I(z) = (x, P(z),m,V). Similarly, the operators A3,B3: L?(T%,RY) — C>°(T? R?) are
given by

AW)(w) = A1y (W) = AaP(@) - | Wndy, BY(W)(@) = B 1y (W) = Dot | Wimdy.

Let 8 = A, and assume || < 1, then also |3] < 1 and we have

(Id—B)(W)=W -8 | Wmdy:=W
Td

Integrating this with respect to m we get (1 — ) de Wmdy = de Wmdy, hence

W=W+ % de Wmdy, therefore

(Id—B3)""(W) =W + B Wmay,
1—0 Jpa

and so

=B @)l < (1+] 2

) ll [ 2,

which means Id — B2 : L?(T4,R?) —: L?(T¢,RY) is invertible.

Now we check the Assumption (B5). For a point I(x) = (z, P(x),m, V) with P(z) = Duy,m =
my,V = Vi, where (uy,my,V)) is a solution to (7.1), we have Hy ;: H*(T4,R?) x H*(T4,R) x
L?(T4,R?) — R defined by

W@ 1 W) = [ @R 1) Q) + ML () + o ) @)

= F@) AR 1) () + m(2)Q(@)B] 10y (W) = f(2) A3 10y (W) .

Simple computations give

/T QB 1 (@) e = [ m(@)Q() D (P (), 2)Q(w)dr > oy / m(2)| Q) d,

Td Td

where o1 = min{1, 0},

m(2)Q(2)By j (o) (f)de = | [m(2)Q()B » V() f(y)dylde = » m(x)Q(x)de |V fde,

Td Td Td

[ 14 (1) = [f(x)BP(x)- V(y)f(y)dy] =5 [ @@ [ Vs,

Td Td Td

(@) Q)B4 oy (W) e = [m(x)Q(fv)ﬂ W(y)m(y)dy} e
Td T Td

=6 m@)Qx)dx | W(x)m(z)dz,
']I‘d ']I‘d

/ f(ff)Ai,z(z)(W)CbU:/ {f(x)ﬁp(x)' W(y)m(y)dy] dv=p | P(x)f(z)de | W(z)m(z)dr.
Te Td Td

T T4
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Plugging all this into (8.6) we obtain

Ha1(Q, f,W) >0y /Tdm|Q|2dx+/ g’(m)\f|2dx+ﬂ/w dea;/Td V fdx

Td

—5/pofdx/wVfdx+ﬂAdeMAdWmM—6/qrdedx TdWmdx

Since (ux, mx, Vi) is a solution to (7.1), we have that [|[1/|o || Ploc, [|V]lee < C, m > i, for some
constants C',m > 0. Since g is strictly increasing we have that ¢’(m) > no > 0 for all m € [m, C].
Then using Cauchy’s and Holder’s inequalities we get

(/Tdedx)z—i- (/Tdedx)21 <3 (Adm|Q|2m+CQAd|f2m>,

/Tdedx/Td V fdx
/Td m|Q|? dx + (/Td Wmdx)j ,

2
T 1f2dz + ( Wmd:c) ] :
Td T4

1
/ mQdx Vfd:c’ <=
Td Td 2

similarly

< / P,
’]Td

1
mQdx Wmdz| < =
Td Td 2

/ Pfdo:/ Wmdx’ﬁl
Td Td 2

This yields

3, =2 2
HorQf W) 2 01 [ mlQPass [ fm)ipPae-tal [ miQPas-laic? [ (2dsfol ([ winds) .
Td Td Td Td Td
thus
2 3, A2 2 ?
Hor(@, f, W) 2 (01— |al) [ m|Q dz+ (10 — 5lalC7) | |f[de —|a] Wmdz | .
Td Td T

To estimate the last term let

R=W =B ;()(Q) =B 1(a)(f) =B} 1() (W) = W =Dy, lnQ — 8 /T Vfd—p /T Wmdz. (8.7)
Integrating with respect to m we get

/ Rmdx = (1 - 05) Wmdx — / ijphAdem - ,8/ V fdx,
Td Td Td

Td
Wnde = —— Rmdx+/ D? h,\dex+ﬁ/ VFl,
Td 1—0 [Jre a7 Td

hence the inequality (a + b+ ¢)? < 3(a® + b* + ¢2), Holder’s inequality and the bound |V| < C
yield

? 3 2 2 2 272 2

If |o| <1/2 then || <|a] <land [1 -8 >1—|8] > 1—|a| < 1/2, thus
2
( Wmdx) < 12[ RdeQH—/ |D12,ph,\Q|2mdx+62/ |f|2} :
T4 T4 T4 T¢
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and we get
2 2 27 =2 2 2
Har(@ £, W) 2 (o1 = 13lal) | mIDE,haQPde+ (no— 5 1afC”) [ |fPde—12 | |RPmds.
T T T

Let ap = min{ g%, 22 }, 0 = min{ %, "» }, then for |a| < ap we obtain

Har(Qu f, W) > / m| QP dx 1+ 0 / fPdr — 12 / IRP*mdz
’ 2 Jpa 2 Jra Td

29/ m|Q|2—|—|f\2dx—12/ |R|*md,
Td Td

so Assumption (B5) holds. O
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