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Abstract

In this paper we consider extended stationary mean-field games, that is mean-field games
which depend on the velocity field of the players. We prove various a-priori estimates which
generalize the results for quasi-variational mean-field games in [GPSM12]. In addition we
use adjoint techniques to obtain higher regularity bounds. Then we establish existence of
smooth solutions under fairly general conditions by applying the continuity method. When
applied to standard stationary mean-field games as in [LL06a], [GSM11] or [GPSM12] this
paper yields various new estimates and regularity properties not available previously. We
discuss additionally several examples where existence of classical solutions can be proved.

1 Introduction

In an attempt to understand the limiting behavior of systems involving very large numbers of
rational agents behaving non-cooperatively and under symmetry assumptions, Lasry and Lions
[LL06a, LL06b, LL07a, LL07b], and, independently, and around the same time Huang, Malhamé,
and Caines [HMC06], [HCM07], introduced a class of models called mean-field games. These
problems attracted the attention of many other researchers and the progress has been quite fast,
for recent surveys see [LLG10], [Car], and [GS13] and references therein.

Denote by Td the d-dimensional torus, and P(Td) the set of Borel probability measures on Td
and let Pac(Td) the set of measures from P(Td) which are absolutely continuous. Let

F : Td × Rd × Pac(Td)→ R

be a function satisfying appropriate continuity, differentiability and growth conditions. An impor-
tant class of stationary mean field games, see for instance [LL06a], can be modeled by a system
of PDE’s of the form {

∆v(x) + F (x,Dv(x), f) = F

∆f(x)− div(DpF (x,Dv(x), f)f(x)) = 0.
(1.1)

To avoid additional difficulties it is usual to consider periodic boundary data, or equivalently,
taking x ∈ Td. The unknowns of the previous PDE are a triplet (F , v, f) where F is a real
number, v ∈ C2(Td), and f ∈ P(Td).
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Stationary mean-field games have an independent interest but also, as shown in [CLLP] and
[Car13a] (see also [GMS10], and [GMS11], for discrete state problems) they encode the asymptotic
long time behavior of various mean-field games. Equations of the form (1.1) also arise in calculus
of variations problems. One important example is the following: given H0 : Td×Rd → R consider
the stochastic Evans-Aronsson problem

inf
φ

∫
Td
eε∆φ+H0(x,Dφ(x))dx,

where the minimization is taken over all φ ∈ C2(Td). The Euler-Lagrange for this functional can
be written as {

ε∆u(x) +H0(x,Du(x)) = lnm(x) +H

ε∆m(x)− div(DpH0(x,Du(x))m(x)) = 0,

where H is an additional parameter chosen so that m = e∆u(x)+H0(x,Du(x))−H is a probability
measure in Td. When ε = 0 this problem was studied in [Eva03] (see also [GISMY10]) and
the case ε > 0 in [GSM11] (for d ≤ 3 or quadratic Hamiltonians in arbitrary dimension). A
natural generalization of these problems is the so called class of quasi-variational mean-field games,
considered in [GPSM12], which consists in mean-field games which are perturbations of mean-field
games with a variational structure.

In this paper we consider a further extension of the mean field problem (1.1) which allows the
cost function of a player to depend also on the velocity field of the players. In order to do so,
denote by χ(Td) the set of continuous vector fields on Td. Let

H : Td × Rd × Pac(Td)× χ(Td)→ R

be a function satisfying appropriate conditions as we detail in Section 2. We consider the following
equation on the d−dimensional torus Td.

∆u(x) +H(x,Du(x),m, V ) = H

∆m(x)− div(V (x)m(x)) = 0

V (x) = DpH(x,Du(x),m, V ).

(1.2)

The unknowns for this problems are u : Td → R, identified with a Zd-periodic function on Rd
whenever convenient, a probability measure m ∈ P(Td), the effective Hamiltonian H ∈ R and the
effective velocity field V ∈ χ(Td). We require m to be a probability measure absolutely continuous
with respect to Lebesgue measure with strictly positive density.

An example problem is the following:

H(x, p,m, V ) =
1

2
|p|2 − αp

∫
Td
V (y)dm(y)− g(m), (1.3)

with α small enough, where g : R+
0 → R is an increasing function, typically g(m) = lnm or

g(m) = mγ .
The main result in this paper is Theorem 7.1 which establishes the existence of classical so-

lutions for (1.2) for a general class of Hamiltonians H of which (1.3) is a main example. Two
explicit applications of this result are presented in Theorems 8.1 and 8.2. In particular, in the
case g(m) = lnm we obtain smooth solutions in any dimension d; for the case g(m) = mγ , γ > 0,
our results yield smooth solutions for d ≤ 4, and, in general, for γ ≤ 1

d−4 if d ≥ 5.
To the best of our knowledge, all previous results in the literature for mean-field games do

not consider the dependence on V . However, even without this dependence this paper extends
substantially previous results. In [LL07a] Lions and Lasry considered mean-field games with
Lipschitz (with respect to Wasserstein metric) nonlinearities (see also [LL06b] and the notes P.
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Cardaliaguet [Car] for a detailed proof); additionally, in the same paper, the existence of solutions
in Sobolev spaces for time dependent problems was also considered. In the stationary setting
related estimates are discussed in the present paper in Section 3 as a preliminary step towards
additional regularity. In [GSM11] and [GPSM12] the variational and quasivariational settings for
stationary mean field games were considered. In [GSM11] the g(m) = lnm was addressed and for
dimension d ≤ 3 existence of classical solutions was established. In [GPSM12], for g(m) = mγ ,
0 < γ < 1, the following a-priori estimate was proved: u ∈W 2,q, q > 1 in dimensions d ≤ 3.

For the time dependent problem, not addressed in the present paper, in [LL06b] the authors
addressed existence of weak-solutions for the initial-terminal value problem. Concerning the plan-
ning problem, these are investigated in [Por13]. Weak solutions are also addressed using variational
methods in [Car13b]. For quadratic Hamiltonians, existence of smooth solutions has been estab-
lished in the appendix of [CLLP]. As presented in [Lio12], mean-field games with quadratic or
subquadratic growth, and the model non-linearity g(m) = mα, admit classical solutions under
some constraints on α. Existence of smooth solutions for the time dependent case is addressed in
the upcoming papers [GPSM13a, GPSM13b] where the authors substantially improve and extend
the results in [Lio12], in particular address superquadratic Hamiltonians.

The paper is structured as follows: we start in Section 2 by discussing the main hypothesis.
Then we proceed to Section 3 where we present some elementary estimates for solutions to (1.2)
which are analogues of the estimates for time-dependent problems in [LL07a] and the ones in
[GPSM12]. In particular we prove H1 bounds for m and W 1,p bounds for u. In Section 4 we
obtain further integrability and regularity properties of m and u, such as H1 bounds of | lnm|q
for any q ≥ 1, integrability of 1

mr0 for some r0 > 0, W 2,q bounds for u for some q > 1 if
g(m) = lnm. Furthermore we prove Lr bound for g(m) with r > d, and L2 bound for D(g(m))
both for logarithmic g(m) = lnm and power g(m) = mγ nonlinearities. In Section 5 we consider
Hamiltonians of a special form which can not be handled by methods of Section 6. For these
Hamiltonians in case of logarithmic nonlinearity g(m) = lnm we obtain L∞ bounds for 1

m , and
W 2,2 bounds for u. Additionally, for dimensions not greater than 3 we establish also W 1,∞ and
W 3,2 bounds for u. In Section 6 we employ the adjoint method technique developed by L. C.
Evans ([Eva10]) to prove W 1,∞ bounds for u for a broad class of Hamiltonians. This application
of the adjoint method extends the ideas in [GSM11]. We end the section by proving a-priori
bounds for all derivatives of m and u for both logarithmic g(m) = lnm and power like g(m) = mγ

nonlinearities for any γ > 0 if d ≤ 4 and for γ ∈ (0, 1
d−4 ) if d > 4. The same bounds are also

proved for the Hamiltonians of special form considered in Section 5 with logarithmic nonlinearities
in dimensions not grater than 3. In Section 7 we use bounds from Section 6 and continuation
method to prove existence of smooth solutions to (1.2), for this we impose further assumptions
which are related with the monotonicity conditions by J. M. Lasry-P. L. Lions used to establish
uniqueness (see [LL07a],[Car]). Finally in Section 8 we present two examples of problems for which
our existence results apply. The first example is the case without velocity field dependence, the
second case concerns Hamiltonians of simple form with small dependence on velocity field.

2 Assumptions

In this section we introduce and discuss the various assumptions that will be needed throughout
the paper. Further hypothesis needed for application of continuation method are discussed only
in Section 7. Other additional estimates can be proven under different assumptions, and those are
discussed only in Section 5.

We will be working under the assumption that H is quasi-variational([GPSM12]):

(A1) There exists a function g : (0,∞)→ R and a continuous Hamiltonian

H0 : Td × Rd × P(Td)× χ(Td)→ R,
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such that:
|H(x, p,m, V )−H0(x, p,m, V ) + g(m(x))| ≤ C,

for all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td).
Note that unlike H, H0 does not depend in m pointwisely.

(A2) The function g : (0,∞) → R is smooth, strictly increasing. More precisely one of the
following holds:

a)
g(m) = lnm,

b)
g(m) = mγ , with γ > 0,

in which case we will refer to them as, respectively, Assumption (A2a) or (A2b).

Remark 1. In fact one could consider a general local dependence on the measure g(x,m) and
having similar growth in m. Most arguments would work as well without any substantial change.
See the Remark 5 after Proposition 3.7, where some of the additional modifications are outlined.

We suppose that for the Hamiltonians H : Td × Rd × Pac(Td) × χ(Td) → R and H0 : Td ×
R×P(Td)× χ(Td)→ R the following assumptions are satisfied:

(A3) There exist constants C > 0 (also denoted as CA3 whenever the explicit constant is neces-
sary), and δ > 0 such that for all (x, p,m, V ) ∈ Td × Rd × P(Td)× χ(Td),

|p|2 ≤ C + CH0(x, p,m, V ) + δ

∫
Td
|V |2dm.

(A4) For any m ∈ Pac(Td) and V ∈ χ(Td) the function H(x, p,m, V ) + g(m(x)) is smooth in
variables x, p with locally uniformly bounded derivatives.

For (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td) we define the Lagrangian L associated with H as

L(x, p,m, V ) = −H(x, p,m, V ) + pDpH(x, p,m, V ). (2.1)

With this notation we assume further:

(A5) There exists c > 0 such that, for all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td)

L(x, p,m, V ) ≥ cH0(x, p,m, V ) + g(m)− C − δ
∫
Td
|V |2dm. (2.2)

(A6) There exist a constant C > 0 (also denoted as CA6 whenever the explicit constant is neces-
sary) such that for all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td)

|DpH(x, p,m, V )|2 ≤ C + CH0(x, p,m, V ) + δ

∫
Td
|V |2dm. (2.3)

The following hypothesis depends implicitly upon the bounds given in Proposition 3.5.

(A7) We assume
δ ∈ [0, δ0],

where δ0 is a constant which depends only on the constants c, CA3 and CA6 from Assumptions
(A5), (A3) and (A6), respectively, and is determined explicitly by condition (3.5) in the proof
of Proposition 3.5.
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Remark 2. Assumption (A7) imposes a small dependence condition in the velocity field. The
need of this assumption is justified by the consideration that one needs a solvability assumption on
the third equation in (1.2). Indeed, without the smallness condition it is not clear one can solve
that equation. As an example one may consider the Hamiltonian H(x, p) = 1

2 |p|
2 + a(x) + αp ·∫

Td V dm− g(m). Then the third equation in (1.2) is

V = Du+ α

∫
Td
V dm.

For |α| < 1 the right hand side of the previous equality is a contraction and so there exists a unique
solution V . However, when α = 1 this no longer the case. In fact, a further additional condition∫
Td Dudm = 0 must hold, and existence of solutions to (1.2) may possibly fail.

Another hypothesis concerns the convexity of H in p. We suppose:

(A8) H is uniformly convex in p: there exists κ > 0 such that for all (x, p,m, V ) ∈ Td × Rd ×
Pac(Td)× χ(Td)

D2
ppH(x, p,m, V ) ≥ κI,

where I is the identity matrix in Rd.

Set
Ĥx = Dx(H(x, p,m, V ) + g(m(x))),

Ĥxx = Dxx(H(x, p,m, V ) + g(m(x))),

Ĥxp = Dx(DpH(x, p,m, V )) (2.4)

then we require

(A9) For all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td)

|Ĥxx(x, p,m, V )| ≤ C + CH0(x, p,m, V ) + δ

∫
Td
|V |2dm.

(A10) For all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td)

|Ĥxp(x, p,m, V )|2 ≤ C + CH0(x, p,m, V ) + δ

∫
Td
|V |2dm.

(A11) There exists 0 ≤ β < 2 such that for all (x, p,m, V ) ∈ Td × Rd × Pac(Td)× χ(Td)

|Ĥx(x, p,m, V )| ≤ C + C|p|β . (2.5)

Remark 3. Note that the case of the Hamiltonians of the form a(x)|p|2 − g(m) is ruled out by
the assumptions above. However this case is handled separately in the Section 5. The relevant
assumptions are (H1) and (H2).

3 Elementary estimates

In this section we are going to prove various a-priori estimates for the solutions to the quasivari-
ational stationary extended mean-field game equation (1.2). Hereafter, by a solution to (1.2) we
mean a classical solution, with m > 0. Later we will use these estimates to prove the existence
of smooth solutions to (1.2) by the continuation method. These estimates can be regarded as
the analog for stationary problems as the estimates for the time-dependent case in [LL07a]. Our
presentation will be based upon the ideas and techniques from [GPSM12] with some modifications
to allow for the dependence of H on V .
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Proposition 3.1. Assume (A1)-(A5). Let (u,m, V,H) solve system (1.2), then there exists C > 0
which does not depend on the solution, such that∣∣∣∣∫

Td
g(m)dx

∣∣∣∣ , ∣∣∣∣∫
Td
mg(m)dx

∣∣∣∣ ≤ C + Cδ

∫
Td
|V |2dm,

and

|H| ≤ C + Cδ

∫
Td
|V |2dm. (3.1)

Proof. Multiplying the first equation of (1.2) by m and integrating by parts, we get:

H =

∫
Td

∆u+H(x,Du,m, V )dm

=

∫
Td

H(x,Du,m, V )− V Dudm

= −
∫
Td

L(x,Du,m, V )dm

≤ −
∫
Td

[cH0(x,Du,m, V ) + g(m)] dm+ δ

∫
Td
|V |2dm+ C

≤ −
∫
Td

g(m)dm+

(
c

CA3
+ 1

)
δ

∫
Td
|V |2dm+ C,

(3.2)

where recall that L is given by (2.1) and we used (A5) and (A3). Here the constants c and CA3

are the constants from Assumptions (A5) and (A3) respectively.
For the opposite inequality, from the first equation in (1.2), (A1) and (A3) we have

H ≥ ∆u(x)− g(m)− C − δ

CA3

∫
Td
|V |2dm.

Integrating in x we get

H ≥ −
∫
Td

g(m)dx− C − δ

CA3

∫
Td
|V |2dm. (3.3)

Combining (3.2) and (3.3) we obtain∫
Td

mg(m)dx ≤
∫
Td

g(m)dx+

(
c+ 1

CA3
+ 1

)
δ

∫
Td
|V |2dm+ C,

now by noting that for both Assumptions (A2a) and (A2b) we have
∫
Td mg(m)dx ≥ −C and

g(m) ≤ 1
2mg(m) + C for some constant C > 0, we conclude∣∣∣∣∫

Td
g(m)dx

∣∣∣∣ ≤ (c+ 1

CA3
+ 1

)
δ

∫
Td
|V |2dm+ C,

−C ≤
∫
Td
mg(m)dx ≤ 2

(
c+ 1

CA3
+ 1

)
δ

∫
Td
|V |2dm+ C,

plugging these in (3.2) and (3.3) yields

−
(
c+ 2

CA3
+ 1

)
δ

∫
Td
|V |2dm− C ≤ H ≤

(
c

CA3
+ 1

)
δ

∫
Td
|V |2dm+ C
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Corollary 3.2. Assume (A1)-(A5). Let (u,m, V,H) solve the system (1.2), then there exists
C > 0 which does not depend on the solution, such that∫

Td
H0(x,Du,m, V )dx ≤ C + Cδ

∫
Td
|V |2dm.

Proof. From the first equation in (1.2), (A1), Proposition 3.1, we have∫
Td
H0(x,Du,m, V )dx ≤ H +

∫
Td
g(m)dx+ C ≤ C +

(
2c+ 1

CA3
+ 2

)
δ

∫
Td
|V |2dm.

Corollary 3.3. Assume (A1)-(A5). Let (u,m, V,H) solve the system (1.2), then there exists
C > 0 which does not depend on the solution, such that∫

Td

H0(x,Du,m, V )dm ≤ C + Cδ

∫
Td
|V |2dm. (3.4)

Remark 4. Note that Corollaries (3.2) and (3.3) control the integral of H0(x,Du,m, V ) with
respect to distinct measures. In the first one the integration is taken with respect to the measure
dx whereas in the second with respect to dm.

Proof. As in the proof of Proposition 3.1, we have

H = −
∫
Td

L(x,Du,m, V )dm ≤ C −
∫
Td
g(m)dm− c

∫
Td

H0(x,Du,m, V )dm+ δ

∫
Td
|V |2dm,

From this, using the bounds from Proposition 3.1 we get∫
Td

H0(x,Du,m, V )dm ≤ C +
1

c

(
c+ 2

CA3
+ 2

)
δ

∫
Td
|V |2dm.

Proposition 3.4. Assume (A1)-(A6) and let (u,m, V,H) solve the system (1.2). Then there
exists C > 0 which does not depend on the solution, such that

‖
√
m‖H1 ≤ C + Cδ

∫
Td
|V |2dm.

Proof. Multiplying the second equation of (1.2) by lnm and integrating by parts we get the
estimate

4

∫
Td
|D
√
m|2dx =

∫
Td

|Dm|2

m
dx =

∫
Td
DmDpHdx ≤ 1

2

∫
Td

|Dm|2

m
dx+

1

2

∫
Td
|DpH|2dm.

Hence ∫
Td
|D
√
m|2dx ≤ C

∫
Td
|DpH|2dm.

The result then follows from (A6), Corollary 3.3 and
∫
Td mdx = 1.

Proposition 3.5. Assume (A1)-(A6). Let (u,m, V,H) solve system (1.2). Then, there exist
C, δ0 > 0 which do not depend on the solution, such that for any δ ∈ [0, δ0] we have∫

Td
|V |2dm ≤ C.
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Proof. Using the last equation of (1.2), (A6) and Corollary 3.3, we get∫
Td
|V |2dm =

∫
Td
|DpH|2dm ≤ C + CA6

∫
Td
H0dm+ δ

∫
Td
|V |2dm

≤ C +

[
CA6

c

(
c+ 2

CA3
+ 2

)
+ 1

]
δ

∫
Td
|V |2dm,

Where CA6 is the constant from Assumption (A6).
When the δ0 satisfies the condition[

CA6

c

(
c+ 2

CA3
+ 2

)
+ 1

]
δ0 < 1, (3.5)

then we get the desired bound.

Combining Proposition 3.5 with Propositions 3.1, 3.4 and Corollaries 3.2, 3.3 we get:

Corollary 3.6. Assume (A1)-(A7). Let (u,m, V,H) solve system (1.2). Then, there exists C > 0
which does not depend on the solution, such that∣∣∣∣∫

Td
g(m)dx

∣∣∣∣ , ∣∣∣∣∫
Td
mg(m)dx

∣∣∣∣ ≤ C, (3.6)

|H| ≤ C, (3.7)∣∣∣∣∫
Td
H0(x,Du,m, V )dx

∣∣∣∣ ≤ C, and so ‖Du‖L2(Td) ≤ C, (3.8)∣∣∣∣∫
Td
H0(x,Du,m, V )dm

∣∣∣∣ ≤ C, (3.9)

‖
√
m‖H1(Td) ≤ C. (3.10)

Proposition 3.7. Assume (A1)-(A10) and let (u,m, V,H) solve system (1.2). Then, there exists
C > 0 which does not depend on the solution, such that∫

Td
g′(m)|Dm|2dx ≤ C,

∫
Td
|D2u|2dm ≤ C. (3.11)

Proof. Applying the operator ∆ on the first equation of (1.2) we obtain

∆2u+ Ĥxixi + 2Ĥpkxi(x,Du,m, V )uxkxi + Tr(D2
ppH(x,Du,m, V )(D2u)2)+

DpH(x,Du,m, V )D∆u− div(g′(m)Dm) = 0.

Integrating with respect to m we get∫
Td
g′(m)|Dm|2dx+

κ

2

∫
Td
|D2u|2dm ≤

∫
Td
|Ĥxixi |dm+ C|Ĥxp|2dm ≤ C + Cδ

∫
Td
|V |2dm,

where in the last inequality we used (A9) and (A10), then Proposition 3.5 finishes the proof.

Remark 5. Note that the previous proposition can be modified to address general local terms
g(x,m). The key point is to control the term

∫
Td Dxg(x,m)Dmdx in the last inequality of the

proof. This term can be absorbed in by the term
∫
Td Dmg(x,m)|Dm|2dx, provided one has suitable

growth assumptions on Dxg, for instance |Dxg|2 ≤ CDmg(x,m).
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Corollary 3.8. Assume (A1)-(A10) and (A2a), and let (u,m, V,H) solve system (1.2). Then,
there exists C > 0 which does not depend on the solution, such that∫

Td
m

2∗
2 dx ≤ C, (3.12)

and ∫
Td
H0(x,Du,m, V )2dm ≤ C, and so

∫
Td
|Du|4dm ≤ C. (3.13)

Proof. From Corollary 3.6, estimate (3.10), we know that m
1
2 ∈ H1(Td). Sobolev’s Theorem then

implies (3.12). Since 2∗

2 > 1, from (3.12) we deduce in particular that, under (A2a)∫
Td
g(m)2dm ≤ C. (3.14)

Now, using (A1) and (3.7), we have

H0(x,Du,m, V ) ≤ C −∆u+ g(m).

Then by (A3), Proposition 3.7 and (3.14), we get∫
Td
|Du|4dm ≤ C + C

∫
Td
H2

0dm ≤ C + C

∫
Td
g(m)2dm+ C

∫
Td
|D2u|2dm ≤ C.

Corollary 3.9. Assume (A1)-(A10), and (A2b). Let (u,m, V,H) solve system (1.2). Then, there
exists C > 0 which does not depend on the solution, such that∫

Td
m

2∗
2 (γ+1)dx ≤ C. (3.15)

Furthermore, if 2γ + 1 ≤ 2∗

2 (γ + 1), then∫
Td
H0(x,Du,m, V )2dm ≤ C, and so

∫
Td
|Du|4dm ≤ C. (3.16)

Proof. Let f(x) = m
γ+1
2 (x). From (3.6) we have∫

Td
f2dx =

∫
Td
mg(m)dx ≤ C.

Note that ∫
Td
|Df |2dx = C

∫
Td
mγ−1|Dm|2dx = C

∫
Td
g′(m)|Dm|2dx ≤ C.

Thus
‖f‖H1 ≤ C.

The Sobolev inequality then implies

‖f‖L2∗ ≤ C‖f‖H1 ≤ C,

which proves (3.15). In particular, if 2γ + 1 ≤ 2∗

2 (γ + 1), then∫
Td
g(m)2mdx =

∫
Td
m2γ+1dx ≤ C + C

∫
Td
m

2∗
2 (γ+1)dx = C + C

∫
Td
f2∗dx ≤ C. (3.17)
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Using (A1) and (3.7), we have

H0(x,Du,m, V ) ≤ C −∆u+ g(m).

Then by (A3), Proposition 3.7 and (3.17)∫
Td
|Du|4dm ≤ C + C

∫
Td
H2

0dm ≤ C + C

∫
Td
g(m)2dm+ C

∫
Td
|D2u|2dm ≤ C.

4 Additional integrability properties

In this section we continue the study of various a-priori estimates, focusing our attention in Lq

estimates for m as well as lnm. This in particular, see Theorem 4.6, yields W 2,q estimates for u.

Proposition 4.1. Assume (A1)-(A10) and let (u,m, V,H) solve system (1.2). Furthermore,
suppose that one of the following assumptions is satisfied:

(i) (A2a);

(ii) (A2b), with 2γ + 1 ≤ 2∗

2 (γ + 1).

Then there exists a constant C > 0, which does not depend on the solution, such that

‖m‖Lq(Td) ≤ C ∀ 1 < q <∞, if d ≤ 4,

‖m‖Lq(Td) ≤ C ∀ 1 < q <
d

d− 4
, if d ≥ 5.

Proof. Assumption (A6), (3.13), (3.16) and Proposition 3.5 imply∫
Td
|DpH|4mdx ≤ C. (4.1)

Multiply the second equation of (1.2) by mr, r > 0, and integrate by parts:∫
Td
mr−1|Dm|2 −mrDpH ·Dmdx = 0.

Then, by Young’s inequality

∫
Td
mr−1|Dm|2dx ≤

∫
Td
mr|DpH||Dm|dx

=

∫
Td
|DpH|m

1
4 |Dm|m

r−1
2 m

2r+1
4 dx

≤
∫
Td

1

4
|DpH|4m+

1

2
mr−1|Dm|2 +

1

4
m2r+1dx.

Estimate (4.1) then implies ∫
Td
mr−1|Dm|2dx ≤ C + C

∫
Td
m2r+1dx. (4.2)

Remark that mr−1|Dm|2 = cr|Dm
r+1
2 |2. By Sobolev’s Theorem, if m

r+1
2 ∈ H1(Td) then

m
r+1
2 ∈ L2∗(Td) and (∫

Td
m

2∗
2 (r+1)

) 2
2∗

≤ C
∫
Td
crm

r−1|Dm|2 +mr+1dx,
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where 2∗ = 2d
d−2 . Then we have

(∫
Td
m

2∗
2 (r+1)

) 2
2∗

≤ C + C

∫
Td
m2r+1dx. (4.3)

Now, if d ≤ 4 then 2∗

2 (r + 1) > 2r + 1 for any r > 0, while if d ≥ 5 the inequality is true if

r < 2
d−4 . Under these assumptions on r, and

∫
Td m

2∗
2 dx ≤ C, iterating (4.3) we conclude that

m ∈ Lq for any q > 1 if d ≤ 4. If d ≥ 5 then∫
Td
m

2∗
2 (r+1)dx ≤ C

for any r < 2
d−4 , i.e., m ∈ Lq for any 1 < q < d

d−4 .

Proposition 4.2. Assume (A1)-(A10). Let (u,m, V,H) solve system (1.2). Then∫
Td
|D lnm|2dx ≤ C.

Furthermore if (A2a) holds then there exists a constant C > 0, which does not depend on the
solution, such that ‖ lnm‖H1(Td) ≤ C.

Proof. Multiplying the second equation in (1.2) by 1
m and integrating by parts as in the proof of

Proposition 3.4 we get∫
Td
|D lnm|2dx ≤ C

∫
Td
|DpH(Du, x,m, V )|2dx ≤ C + C

∫
Td
H0dx ≤ C,

using Assumption (A6), and (3.8).
Now assume (A2a) holds. Integrating the first equation in (1.2), using the Jensen’s inequality,

(A1) and Corollary 3.6, we have

0 ≥
∫
Td

lnmdx ≥ −C +

∫
Td
H0(Du, x,m, V )dx ≥ −C.

Therefore ∣∣∣∣∫
Td

lnmdx

∣∣∣∣ ≤ C.
Then by the Poincaré inequality∫

Td
| lnm|2dx ≤

(∫
Td

lnmdx

)2

+

∫
Td
|D lnm|2dx ≤ C.

The previous proposition can in fact be improved as we show next.

Proposition 4.3. Assume (A1)-(A10) and (A2a). Let (u,m, V,H) solve system (1.2). Then, for
every 1 ≤ p <∞, there exists a constant Cp > 0 which does not depend on the solution, such that

‖| lnm|p‖H1(Td) ≤ Cp.
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Proof. We prove by induction that fk = | lnm| k+1
2 ∈ H1(Td), for any k ∈ N. For k = 1 this is

Proposition 4.2. Let l ≥ 1 and suppose that ‖fk‖H1(Td) ≤ Cl for all k ≤ l, then we have

‖Dfk‖2L2 =

∫
Td

| lnm|k−1

m2
|Dm|2dx ≤ C2

l ,

and

‖fk‖2L2 =

∫
Td
| lnm|k+1dx ≤ C2

l .

We want to show that fl+1 ∈ H1(Td). Let Fl(z) =
∫ z

1
| ln y|l
y2 dy multiplying the second equation of

(1.2) by Fl(m) and integrating by parts we get∫
Td

| lnm|l

m2
|Dm|2dx =

∫
Td

| lnm|l

m
DmDpHdx ≤ 1

2

∫
Td

| lnm|l

m2
|Dm|2dx+

1

2

∫
Td
| lnm|l|DpH|2dx.

Thus,∫
Td

| lnm|l

m2
|Dm|2dx ≤

∫
Td
| lnm|l|DpH|2dx ≤ C

∫
Td
| lnm|ldx+ C

∫
Td
| lnm|lH0dx (4.4)

where at the last inequality we used (A6) and Proposition 3.5.
Next, from the first equation of (1.2),(A1) and (3.7), we infer that

H0(x,Du,m, V ) ≤ C + | lnm| −∆u.

Then, multiplying by | lnm|l and integrating∫
Td
| lnm|lH0dx ≤ C

∫
Td
| lnm|ldx+ C

∫
Td
| lnm|l+1dx−

∫
Td

∆u| lnm|ldx.

Integrating by parts the last term∫
Td
| lnm|lH0dx ≤ C

∫
Td
| lnm|ldx+ C

∫
Td
| lnm|l+1dx+

∫
Td
Du| lnm|l−1Dm

m
sgn(lnm)dx.

The integration by parts is justified, we just observe the that for a smooth function f the identity
D(|f |p) = p|f |p−2sgn(f)Df holds both a.e. and in distribution sense.

Then, using (A3)

∫
Td
| lnm|lH0dx ≤ C

∫
Td
| lnm|ldx+ C

∫
Td
| lnm|l+1dx+ C

∫
Td
| lnm|l−1dx

+ C

∫
Td
| lnm|l−1H0dx+ C

∫
Td
| lnm|l−1 |Dm|2

m2
dx

≤ C + C

∫
Td
| lnm|l+1dx

+ C

∫
Td

[ε| lnm|l + C(ε)]H0dx+ C

∫
Td
| lnm|l−1 |Dm|2

m2
dx,

which yields ∫
Td
| lnm|lH0dx ≤ C

∫
Td
| lnm|l+1dx+ C

∫
Td
| lnm|l−1 |Dm|2

m2
dx+ C. (4.5)
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Combining (4.4) and (4.5) we get∫
Td

| lnm|l

m2
|Dm|2dx ≤ C

∫
Td
| lnm|l+1dx+ C

∫
Td
| lnm|l−1 |Dm|2

m2
dx+ C,

that is,
‖Dfl+1‖2L2 ≤ C‖fl‖2L2 + C‖Dfl‖2L2 + C ≤ Cl+1.

Since | lnm|l+1 = f2
l ∈ L1 we have fl+1 = | lnm| l2 +1 ∈ L1, then by the Poincaré inequality

‖fl+1‖2L2 ≤ ‖fl+1‖2L1 + C‖Dfl+1‖2L2 ≤ Cl+1,

and this concludes the proof.

Corollary 4.4. Assume (A1)-(A10) and let (u,m, V,H) solve system (1.2). Furthermore, suppose
that one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

Then there exist a constant C > 0 and an exponent r > d which do not depend on the solution,
such that ‖g(m)‖Lr , ‖D(g(m))‖L2 ≤ C.

Proof. The case (i) is a direct consequence of the Proposition 4.3. For the case (ii), note that the
condition 2γ + 1 ≤ 2∗

2 (γ + 1) is satisfied then Proposition 4.1 implies that ‖g(m)‖Lr ≤ C.
To prove that ‖D(g(m))‖L2 ≤ C under (A2b), observe that∫

Td
|D(g(m))|2dx = γ2

∫
Td
m2γ−2|Dm|2dx.

If 0 < γ ≤ 1 then there exists a constant C such that

m2γ−2 ≤ Cm−2 + Cmγ−1.

Therefore ∫
Td
|D(g(m))|2dx = C

∫
Td
m−2|Dm|2dx+ C

∫
Td
mγ−1|Dm|2dx.

The boundedness of the first term on the right hand side follows from Proposition 4.2, whereas
the second term is controlled thanks to Proposition 3.7.

If γ > 1, from (4.2) in the proof of Proposition 4.1 and the first estimate in the same Proposition
we have ∫

Td
mr−1|Dm|2dx ≤ C + C

∫
Td
m2r+1dx ≤ Cr

for any r > 0, taking r = 2γ − 1 we get ‖D(g(m))‖L2 ≤ C.

Proposition 4.5. Assume (A1)-(A10) and (A2a). Then there exist r0 > 0 and C > 0 which do
not depend on the solution, such that ∫

Td

H0

mr0
dx ≤ C, (4.6)

and ∫
Td

1

mr0
dx ≤ C. (4.7)
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Proof. Multiplying the first equation in (1.2) by 1
mr , r > 0, integrating by parts and using (A1)

and (3.7), we get ∫
Td

H0

mr
dx ≤

∫
Td
−rDu ·Dm

mr+1
+

lnm+ C

mr
dx. (4.8)

Next, multiplying the second equation in (1.2) by 1
mr+1 and integrating by parts, we obtain∫

Td

|Dm|2

mr+2
dx =

∫
Td

DpH ·Dm
mr+1

dx. (4.9)

Let us sum the equation (4.8) and equation (4.9) multiplied by r:∫
Td

H0

mr
dx+ r

∫
Td

|Dm|2

mr+2
dx ≤

∫
Td
r

(DpH −Du) ·Dm
mr+1

+
lnm+ C

mr
dx

≤
∫
Td
Cr

(|DpH|+ |Du|)|Dm|
mr+1

+
lnm+ C

mr
dx

≤
∫
Td

1

2

H0

mr
+ Cr2 |Dm|2

mr+2
+

lnm+ C

mr
dx,

where we used (A3) and (A6). Now, let r0 > 0 small enough such that r0 ≤ Cr2
0, then∫

Td

1

2

H0

mr0
dx ≤

∫
Td

lnm+ C

mr0
dx ≤ C.

and (4.6) is proven. Moreover, the previous inequalities and (A3) imply that

0 ≤
∫
Td

lnm+ C

mr0
dx ≤ C,

from which (4.7) follows. �

Theorem 4.6. Assume (A1)-(A10) and (A2a), then there exist q > 0 and a constant C > 0
which do not depend on the solution, such that

‖u‖W 2,1+q(Td) ≤ C.

Proof. Raise the inequality

|∆u| ≤ H0(x,Du,m, V ) + | lnm|+ C,

to the power q + 1 with 0 < q ≤ 1
2 , and integrate:∫

Td
|∆u|q+1dx ≤ Cq

∫
Td

(Hq+1
0 + | lnm|q+1)dx+ Cq. (4.10)

Next from the Young’s inequality, (3.13) and (3.8), for any 0 ≤ r ≤ 1, we have∫
Td
H1+r

0 mrdx =

∫
Td
H2r

0 mrH1−r
0 dx ≤

∫
Td
rH2

0m+ (1− r)H0dx ≤ C.

Hence, we can estimate
∫
Td H

q+1
0 dx as follows∫

Td
Hq+1

0 dx =

∫
Td
H
q+ 1

2
0 mqH

1
2
0

mq
dx ≤ 1

2

∫
Td
H2q+1

0 m2q +
H0

m2q
dx ≤ C, (4.11)

if q ≤ r0
2 , where r0 is given by Proposition 4.5. Hence, from (4.10), (4.11) and Proposition

4.3, there exists a q > 0 such that ‖∆u‖L1+q(Td) ≤ C. The elliptic theory then implies that
‖u‖W 2,1+q(Td) ≤ C. �
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5 Further estimates for special Hamiltonians

In this section we consider the equation (1.2) for a special class of Hamiltonians. We assume that
H satisfies the following hypothesis:

(H1) There exist a function
G : Td × Rd × Pac(Td)× χ(Td)→ R

with

|G(x, 0,m, V )|, |DpG(x, p,m, V )|2, |DxG(x, p,m, V )| ≤ C + ε

∫
Td
|V |2dm

for some constants C, ε > 0, and a twice continuously differentiable function

α : Td → R, with α ≥ α0 > 0,

such that
H(x, p,m, V ) = H0(x, p,m, V )− g(m),

and

H0(x, p,m, V ) = α(x)
|p|2

2
+G(x, p,m, V ).

(H2) G is twice differentiable in x, p with

|D2
xpG(x, p,m, V )|2, |D2

xxG(x, p,m, V )|, |D2
ppG(x, p,m, V )| ≤ C + ε

∫
Td
|V |2dm,

and additionally there exists κ > 0 such that

D2
ppH(x, p,m, V ) ≥ κI.

It is easy to check that there exists a constant ε0 > 0 such that if (H1) holds true for ε ∈ [0, ε0],
then H satisfies the Assumptions (A1)-(A7), if further (H2) holds then H also satisfies (A8)-(A10).

Theorem 5.1. Assume (H1) with ε ∈ [0, ε0] and (A2a). Then there exists C > 0 such that for
any solution (u,m, V,H) to (1.2) ∥∥∥∥ 1

m

∥∥∥∥
L∞(Td)

≤ C.

Proof. First note that from Proposition 3.5 we have
∫
Td |V |

2dm ≤ C, thus |DpG(x,Du,m, V )| ≤ C
and H0(x, p,m, V ) ≥ C0|p|2 − C for some constants C0, C > 0. Now multiply the first equation

in (1.2) by α(x)
mr and integrate by parts:∫

Td

α(x)

mr
H0dx =

∫
Td

Du ·Dα
mr

− rα(x)
Du ·Dm
mr+1

+
α(x)

mr
(lnm+H)dx

≤
∫
Td

α0C0

2

|Du|2

mr
+

C

mr
− rα(x)

Du ·Dm
mr+1

+
α(x)

mr
(lnm+H)dx.

Then, using again the properties of H0 and α and (3.7), we get

α0C0

2

∫
Td

|Du|2

mr
dx ≤

∫
Td
−rα(x)

Du ·Dm
mr+1

+
α(x) lnm+ C

mr
dx. (5.1)

Next, multiply the second equation in (1.2) by 1
mr+1 :∫

Td

|Dm|2

mr+2
− DpH0 ·Dm

mr+1
dx = 0.
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Using the expression of H0, we find∫
Td
α(x)

Du ·Dm
mr+1

dx =

∫
Td

|Dm|2

mr+2
− DpG ·Dm

mr+1
dx.

Substituting this expression in (5.1), we get

C

∫
Td

|Du|2

mr
dx+ r

∫
Td

|Dm|2

mr+2
dx ≤

∫
Td
r
DpG ·Dm
mr+1

+
α(x) lnm+ C

mr
dx

≤
∫
Td

r

2

|Dm|2

mr+2
+
α(x) lnm+ C(r + 1)

mr
dx.

We conclude that

C

∫
Td

|Du|2

mr
dx+

r

2

∫
Td

|Dm|2

mr+2
dx ≤

∫
Td

α(x) lnm+ C(r + 1)

mr
dx. (5.2)

On the other hand, since α(x) ≥ α0 > 0, for any r > 0 there exists Cr > 0 such that∫
Td

2C(r + 1)

mr
dx ≤

∫
Td
−α(x) lnm

mr
dx+ Cr.

We conclude that ∫
Td

1

mr
dx ≤ C̃r

for any r > 0.
Next, we have∫

Td

α(x) lnm+ C(r + 1)

mr
dx ≤

∫
{m≥1}

α(x) lnm

mr
dx+

∫
Td

C(r + 1)

mr
dx

≤ C
∫
Td

Cδ
mr−δ +

r + 1

mr
dx,

(5.3)

for any δ > 0. Hence, from the Sobolev inequality, (5.2) and (5.3), for any r > 0(∫
Td

1

m
2∗
2 r
dx

) 2
2∗

≤ C
∫
Td

∣∣∣∣D 1

m
r
2

∣∣∣∣2 +
1

mr
dx

≤ Cr
∫
Td

Cδ
mr−δ +

r + 1

mr
dx+ C

∫
Td

1

mr
dx.

Now, set β :=
√

2∗

2 > 1 and δ := 1
β′ , where β′ is the conjugate exponent of β. Then, we have

∫
Td

1

mr
dx ≤

(∫
Td

1

mβr
dx

) 1
β

,

and ∫
Td

1

mr−δ dx ≤
(∫

Td

1

mβr
dx

) 1
β
(∫

Td
mδβ′dx

) 1
β′

=

(∫
Td

1

mβr
dx

) 1
β
(∫

Td
mdx

) 1
β′

=

(∫
Td

1

mβr
dx

) 1
β

.
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We conclude that (∫
Td

1

mβ2r
dx

) 1
β2

≤ C(r2 + 1)

(∫
Td

1

mβr
dx

) 1
β

,

i.e., ∥∥∥∥ 1

m

∥∥∥∥
Lβ2r(Td)

≤ C 1
r (r2 + 1)

1
r

∥∥∥∥ 1

m

∥∥∥∥
Lβr(Td)

.

Taking r = βk−1 for an integer k > 0 we get∥∥∥∥ 1

m

∥∥∥∥
Lβk+1 (Td)

≤ C
1

βk−1 β
2(k−1)

βk−1

∥∥∥∥ 1

m

∥∥∥∥
Lβk (Td)

.

Thus ∥∥∥∥ 1

m

∥∥∥∥
Lβk+1 (Td)

≤ C
∞∑
1

1

βk−1
β

∞∑
1

2(k−1)

βk−1

∥∥∥∥ 1

m

∥∥∥∥
L1(Td)

≤ C
∥∥∥∥ 1

m

∥∥∥∥
L1(Td)

≤ C.

Sending k →∞ we infer that ‖ 1
m‖L∞(Td) ≤ C. See also [Eva03] for a similar argument.

Corollary 5.2. Assume (H1),(H2) with ε ∈ [0, ε0] and (A2a). Then for any solution (u,m, V,H)
to (1.2) there exists a constant C which does not depend on the solution, such that ‖u‖W 2,2(Td) ≤ C.
Furthermore, if d ≤ 3, for any q ≥ 1 there exists a constant Cq which does not depend on the
solution, such that ‖u‖W 2,q(Td) ≤ Cq.

Proof. By Theorem 5.1, there exists m̄ > 0 such that m ≥ m̄ in Td. This and Proposition 3.7
imply that ∫

Td
|D2u|2dx ≤ 1

m̄

∫
Td
|D2u|2mdx ≤ C.

Since in addition, ∫
Td
u2dx,

∫
Td
|Du|2dx ≤ C,

we obtain that ‖u‖W 2,2(Td) ≤ C. Because m is bounded by below and ‖m‖L1(Td) = 1 we have

lnm ∈ Lq(Td), for any q > 1. If d = 2, then Sobolev inequalities imply ‖Du‖Lq(Td) ≤ Cq for any
q > 1 thus from the first equation of (1.2) we conclude ‖∆u‖Lq(Td) ≤ Cq for any q > 1. If d = 3
then 2∗ = 6, thus ‖Du‖L6(Td) ≤ C, hence the first equation of (1.2) implies that ‖∆u‖L3(Td) ≤ C.
This together with Sobolev inequalities yield ‖Du‖Lq(Td) ≤ Cq for any q > 1, using the equation
again, we conclude that ‖∆u‖Lq(Td) ≤ Cq for any q > 1.

Corollary 5.3. Assume (H1),(H2) with ε ∈ [0, ε0] and (A2a), then if d ≤ 3 for any solution
(u,m, V,H) to (1.2), there exists a constant C > 0 which does not depend on the solution, such
that ‖u‖W 1,∞(Td) ≤ C and ‖u‖W 3,2(Td) ≤ C.

Proof. The first inequality follows directly from Corollary 5.2 and Sobolev inequalities if we take
q > d in Corollary 5.2. To prove the second inequality we differentiate the first equation in (1.2):

D(∆u) = −Dα |Du|
2

2
− αD2uDu−D2uDpG−Gx +D(lnm)

then Corollaries 5.2 and 4.2 imply ‖D(∆u)‖L2 ≤ C for some constant C > 0, thus ‖u‖W 3,2(Td) ≤ C.

Using these estimates we will prove further regularity estimates for this case in Section 6 (see
Theorem 6.14).
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6 Improved regularity by the adjoint method

In this section we use adjoint method techniques to prove higher regularity estimates for the
solutions to (1.2). For later convenience we discuss a more general situation.

(R1) Let F : Td × Rd → R be a function which satisfies for some constants c, C > 0:

|DpF (x, p)|2 ≤ C|p|2 + C.

(R2)
DpF (x, p)p− F (x, p) ≥ c|p|2 + ζ(x),

with
‖ζ‖Lr ≤ C, for some r > d.

(R3) Let F̂x(x, p) = Dx(F (x, p) + ζ(x)), then

|F̂x(x, p)| ≤ C + ψ(x)|p|β

with
0 ≤ β < 2, ψ ∈ L

2r
2−β (Td).

Consider the equation
∆w + F (x,Dw) = 0. (6.1)

(R4) We suppose that for any solution to (6.1) we have the following a-priori bound:

‖Dw‖L2(Td) ≤ C.

Note that w solves the time dependent equation

wt + ∆w + F (x,Dw) = 0. (6.2)

For any x0 ∈ Td, we introduce the adjoint variable ρ as the solution of{
ρt + div(DpF (x,Dw(x))ρ) = ∆ρ,

ρ(x, 0) = δx0 .
(6.3)

By the maximum principle ρ ≥ 0. Furthermore by integrating the equation we get d
dt

∫
Td ρ(x, t)dx =

0. In particular, for any t > 0 ∫
Td
ρ(x, t)dx = 1. (6.4)

Proposition 6.1. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then, for
any T > 0

w(x0) =

∫ T

0

∫
Td

(F (x,Dw)−Dw ·DpF (x,Dw))ρ(x, t)dxdt+

∫
Td
w(x)ρ(x, T )dx.

Proof. We just multiply equation (6.2) by ρ and integrate by parts using the equation for ρ.

For fixed T > 0, let us denote

‖ρ‖L1(Lq(dx),dt) =

∫ T

0

‖ρ(., t)‖Lq(Td)dt.

Denote by osc(f) = supx f − infx f , for any bounded function f : Td → R. Then we have
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Corollary 6.2. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then∫ T

0

∫
Td
|Dw|2ρ(x, t)dxdt ≤ C‖ρ‖L1(Lq(dx),dt) + C osc(w),

where q is the conjugate exponent of r defined by 1
r + 1

q = 1.

Proof. We use (R2) and Proposition 6.1 to get∫ T

0

∫
Td
|Dw|2ρ(x, t)dxdt ≤ C osc(w)− C

∫ T

0

∫
Td
ζ(x)ρ(x, t)dxdt.

Now, using Hölder’s inequality we have∫ T

0

∫
Td
|ζ|ρdxdt ≤ ‖ζ‖Lr(Td)‖ρ‖L1(Lq(dx),dt),

which ends the proof.

Proposition 6.3. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then for
0 < α < 1, and any δ1 > 0 there exists Cδ1 which does not depend on the solution, such that∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt ≤ Cδ1 + δ1

∫ T

0

∫
Td
|Dw|2ρ(x, t)dxdt.

Proof. Multiplying the first equation in (6.3) by ρα−1 and integrating by parts, we obtain

cα

∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt =

1

α

∫
Td

(ρα(x, T )− ρα(x, 0))dx (6.5)

+ (1− α)

∫ T

0

∫
Td
ρα−1DpF (x,Dw) ·Dρdxdt (6.6)

≤C + ε

∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt+ Cε

∫ T

0

∫
Td
|DpF (x,Dw)|2ραdxdt, (6.7)

for any ε > 0, where cα = 4(1−α)
α2 . Here we used∫

Td
ρα(x, 0)dx,

∫
Td
ρα(x, T )dx ≤ 1,

which is a consequence of (6.4) and Jensen’s inequality. Furthermore, using that ρα ≤ Cδ1 + δ1ρ
and (R1), the last term in the inequality (6.7) can be bounded as follows∫ T

0

∫
Td
|DpF (x,Dw)|2ραdxdt ≤ Cδ1 + δ1

∫ T

0

∫
Td
|Dw|2ρdxdt.

For ε small enough we get the result.

Remark 6. In fact the expression ρ(x, t)α does not always make sense since ρ(x, 0) = δx0
. To

fix this we consider the solution ρε to the equation (6.3) but with initial value ηε instead of δx0 ,
where ηε : Td → R are smooth compactly supported functions with

∫
Td ηε(x)dx = 1 and ηε ⇀ δx0 .

We carry out all the computations with ρε and then send ε→ 0.

Combining the Proposition 6.3 and Corollary 6.2 we conclude that
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Corollary 6.4. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then for any
0 < α < 1, and any δ1 > 0 there exists Cδ1 which does not depend on the solution, such that∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt ≤ Cδ1 + Cδ1‖ρ‖L1(Lq(dx),dt) + Cδ1 osc(w),

where q is the conjugate exponent of r.

Define

αrd = 1 +
1

r
− 2

d
. (6.8)

Since by Assumption (R2) r > d, we have αrd < 1.

Proposition 6.5. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then, for
α > αrd, there exists 0 < µ < 1 which does not depend on the solution, such that

‖ρ‖L1(Lq(dx),dt) ≤ C

(∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt

)µ
+ C,

where q is the conjugate exponent of r.

Proof. Recall that for any 1 ≤ p0 < p1 < ∞, 0 < θ < 1 we have the following interpolation
inequality

‖f‖Lpθ ≤ ‖f‖θLp1‖f‖1−θLp0 ,

where pθ is given by
1

pθ
=

θ

p1
+

1− θ
p0

.

If d > 2, let p = 2∗, where 2∗ is the Sobolev’s conjugate exponent of 2 given by 1
d = 1

2 −
1
2∗ . If

d = 2 we take p to be a sufficiently large exponent. Take p0 = 1, p1 = pα
2 . Let q be the conjugate

exponent of r. Note that if α > αrd we have

1 < q < p1.

Then for pθ = q we have

θ =
1− 1

q

1− 1
p1

.

By Sobolev’s inequality(∫
Td
ρ
pα
2 (x, t)

) 1
p

≤ C
(∫

Td
|D(ρ

α
2 )(x, t)|2dx

) 1
2

+ C,

and so

‖ρ(., t)‖
L
αp
2 (Td)

≤ C
(∫

Td
|D(ρ

α
2 )(x, t)|2dx

) 1
α

+ C.

Using ‖ρ(., t)‖L1 = 1 and the interpolation we get

‖ρ(., t)‖Lq(Td) ≤ C
(∫

Td
|D(ρ

α
2 )(x, t)|2dx

)µ
+ C,

with µ = θ
α . For α > αrd, we have µ < 1. Then by Jensen’s inequality

‖ρ‖L1(Lq(dx),dt) =

∫ T

0

‖ρ(., t)‖Lq(Td) ≤ C

(∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt

)µ
+ C,

where q is the conjugate exponent of r.
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Combining Corollary 6.4 and Proposition 6.5, we get

Corollary 6.6. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then, for for
α > αrd and any δ1 > 0 there exists Cδ1 such that∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt ≤ Cδ1 + Cδ1 osc(w).

Furthermore, using this with Proposition 6.5 gives

Corollary 6.7. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then, for µ
as in Proposition 6.5

‖ρ‖L1(Lq(dx),dt) ≤ C + C(osc(w))µ,

where q is the conjugate exponent of r.

Finally, from Corollaries 6.2 and 6.7, we infer

Corollary 6.8. Assume (R1)-(R4). Let w and ρ solve (6.1) and (6.3) respectively. Then∫ T

0

∫
Td
|Dw|2ρ(x, t)dxdt ≤ C + C osc(w).

Proposition 6.9. Assume (R1)-(R4). Let w solve (6.1). Then Lip(w) ≤ C.

Proof. Let η = Dxiw, then it satisfies the equation

ηt +DpF (x,Dw)Dη + ∆η = −F̂xi(x,Dw) +Dxi(ζ).

Take φ(t) to be smooth with φ(0) = 1 and φ(T ) = 0. Let v = φη, then it satisfies

vt +DpF (x,Dw) ·Dxv + ∆v = −φF̂xi(x,Dw) + φDxi(ζ) + φ′Dxiw.

Integrating with respect to ρ

−v(x0, 0) =

∫ T

0

∫
Td
−φF̂xiρ+ φDxi(ζ)ρ+ φ′Dxiwρdxdt.

Using that |Dxiwρ| ≤ ε|Dw|2ρ+ Cερ for small ε > 0

|v(x0, 0)| ≤
∫ T

0

∫
Td
C|F̂xi |ρ+ Cρ+ Cε|Dw|2ρdxdt+

∫ T

0

∣∣∣∣∫
Td
Dxi(ζ)ρdx

∣∣∣∣ dt. (6.9)

The first term in the right-hand side of (6.9) can be estimated using (R3) and Corollary 6.7:∫ T

0

∫
Td
|F̂xi |ρdx ≤

∫ T

0

∫
Td
Cρ+ ψ|Dw|βρdx ≤

∫ T

0

∫
Td
Cρ+ Cεψ

2
2−β ρ+ ε|Dw|2ρdx

≤ C + Cε‖ρ‖L1(Lq(dx),dt)‖ψ‖
2

2−β

L
2r

2−β
+ ε

∫ T

0

∫
Td
|Dw|2ρdx

≤ C + C(osc(w))µ + ε

∫ T

0

∫
Td
|Dw|2ρdx.

(6.10)

Let us now estimate the last term in the right-hand side of (6.9). We have∫
Td
Dxi(ζ)ρdx = −

∫
Td
ζDxi(ρ)dx =

2

α

∫
Td
ζρ1−α/2Dxi(ρ

α/2)dx.
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Thus ∫ T

0

|
∫
Td
Dxi(ζ)ρdx|dt ≤ C

∫ T

0

∫
Td
ζ2ρ2−αdxdt+ C

∫ T

0

∫
Td
|D(ρα/2)|2dxdt.

We estimate the first term of the previous inequality as follows∫
Td
ζ2ρ2−αdx ≤ ‖ζ2‖

L
r
2 (Td)

‖ρ2−α‖
L

r
r−2 (Td)

= ‖ζ‖2Lr(Td)‖ρ‖
2−α

L
(2−α)r
r−2 (Td)

.

Then by Sobolev inequality and (6.4)

‖ρ‖
L

2∗α
2 (Td)

≤ C‖D(ρα/2)‖
2
α

L2(Td)
+ C. (6.11)

If d > 2, choose now α > αrd so that (2−α)r
r−2 < 2∗α

2 = αd
d−2 . In dimension 2 replace in the previous

condition 2∗ by a sufficiently large p. Note that such choice is possible since for α = 1 we have
r
r−2 <

d
d−2 . Using interpolation we get

‖ρ‖
L

(2−α)r
r−2 (Td)

≤ ‖ρ‖1−θ1
L1(Td)

‖ρ‖θ1
L

2∗α
2 (Td)

≤ C‖D(ρα/2)‖
2θ1
α

L2(Td)
+ C, (6.12)

where θ1 is defined by r−2
(2−α)r = 1−θ1

1 + 2θ1
2∗α . As α → 1 we have θ1 → d

r . Then if α > αrd
sufficiently close to 1 we have

(2− α)θ1

α
< 1.

Then, using Jensen’s inequality we get

∫ T

0

|
∫
Td
D(ζ)ρdx|dt ≤ C

∫ T

0

(∫
Td
|D(ρα/2)|2

) (2−α)θ1
α

+ Cδ1 osc(w) + C

≤ C

(∫ T

0

∫
Td
|D(ρ

α
2 )|2dxdt

) (2−α)θ1
α

+ Cδ1 osc(w) + C.

(6.13)

Note that we can choose x0 and i such that

Lip(w) ≤ d|v(x0, 0)| = d|Dxiw(x0)|.

Then combining the inequalities (6.9), (6.10) and (6.13), Corollaries 6.6 and 6.8, and using
osc(w) ≤ CLip(w), we obtain

Lip(w) = sup
x0∈Td

d|v(x0)| ≤ C + C(ε+ δ1)Lip(w) + (C + CLip(w))
2−α
α θ1

choosing ε, δ1 small and since 2−α
α θ1 < 1, for α close enough to 1, we obtain the result.

Corollary 6.10. Assume (A1)-(A11). Let (u,m, V,H) solve the system (1.2). Assume further
the a-priori bounds ‖g(m)‖Lr ≤ C for r > d. Then there exists a constant C > 0 which does not
depend on the solution, such that ‖u‖W 2,r(Td), ‖u‖W 1,∞(Td) ≤ C.

Proof. The property ‖u‖W 1,∞(Td) ≤ C follows from Proposition ??, estimate (3.8) and the fact
that

F (x, p) = H(x, p,m(x), V (x))−H

satisfies the hypothesis (R1)-(R3) with ζ(x) = g(m(x)) + C, as we show now.
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Let us check (R1). Using Assumptions (A5), (A6) and Proposition 3.5, we get

H(x, p,m, V ) = −L(x, p,m, V ) +DpH(x, p,m, V ) · p

≤ −cH0(x, p,m, V )− g(m) + C +
c

C
|DpH(x, p,m, V )|2 + C|p|2

≤ −cH0(x, p,m, V )− g(m) + cH0(x, p,m, V ) + C|p|2 + C

= C|p|2 − g(m) + C.

This and (A1) imply that
H0(x, p,m, V ) ≤ C|p|2 + C,

and then, by (A6) that
|DpH(x, p,m, V )|2 ≤ C|p|2 + C,

i.e., F (x, p) = H(x, p,m(x), V (x))−H satisfies (R1). The property (R2) is a consequence of (A5)
and Proposition 3.5. Assumption (A11) and estimate (3.8) imply (R3).

Once we know that ‖u‖W 1,∞(Td) ≤ C, from the first equation of (1.2) and |H| ≤ C, we infer
that

|∆u| ≤ |g(m)|+ C.

Since by assumption ‖g(m)‖Lr ≤ C, from the elliptic theory we get ‖u‖W 2,r(Td) ≤ C.

The next Corollary generalizes the result in Corollary 5.3.

Corollary 6.11. Assume in addition to the hypothesis of Corollary 6.10, that ‖D(g(m))‖L2 ≤ C.
Then there exists a constant C > 0 which does not depend on the solution, such that ‖u‖W 3,2(Td) ≤
C.

Proof. We have

D∆u = −D(H(x,Du,m, V )) = −Ĥx +D(g(m))−D2uDpH

which combined with the Corollary 6.10 and Assumption (A11) gives ‖D∆u‖L2(Td) ≤ C, hence
‖u‖W 3,2(Td) ≤ C.

Combining this with the Corollary 4.4 we get:

Corollary 6.12. Assume (A1)-(A11). Let (u,m, V,H) solve the system (1.2). Furthermore,
suppose that one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

Then there exists a constant C > 0 which does not depend on the solution, such that
‖u‖W 1,∞(Td), ‖u‖W 2,r(Td), ‖u‖W 3,2(Td) ≤ C.

Corollary 6.13. Let (u,m, V,H) solve the system (1.2). Assume either

A. (A1)-(A11) and one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

or

B. (H1),(H2) holds with ε ∈ [0, ε0], (A2a) and d ≤ 3.
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Then there exists a constant C > 0 which does not depend on the solution, such that

‖ lnm‖W 1,∞(Td) ≤ C.

In particular there exists a uniform constant m̄ > 0 which does not depend on the solution, such
that m ≥ m̄. Furthermore, for any q > 1 there exists a constant Cq > 0 which does not depend on
the solution, such that

‖u‖W 2,q(Td), ‖m‖W 2,q(Td) ≤ Cq.

Proof. Take any r ∈ R multiply the second equation of (1.2) by mr, r 6= 0, or by lnm for r = 0
and integrate by parts: ∫

Td
mr−1|Dm|2 −mrDpH ·Dmdx = 0,∀r ∈ R.

Then using Corollaries 6.12 or 5.3 and Hölder’s inequality:∫
Td
mr−1|Dm|2dx ≤ C

∫
Td
mr|Dm|dx ≤ C

(∫
Td
mr−1|Dm|2dx

) 1
2
(∫

Td
mr+1dx

) 1
2

,

thus

cr

∫
Td
|Dm

r+1
2 |2dx =

∫
Td
mr−1|Dm|2dx ≤ C

∫
Td
mr+1dx. (6.14)

Note that crm
r−1|Dm|2 = |Dm r+1

2 |2 with cr = (r+1)2

4 . By Sobolev’s Theorem, if m
r+1
2 ∈ H1(Td)

then m
r+1
2 ∈ L2∗(Td) and(∫

Td
m

2∗
2 (r+1)

) 2
2∗

≤ C
∫
Td
crm

r−1|Dm|2 +mr+1dx,

where 2∗ = 2d
d−2 . Then we have

(∫
Td
m

2∗
2 (r+1)

) 2
2∗

≤ C(r2 + 1)

∫
Td
mr+1dx.

Thus for any r > 0 (∫
Td
mβr

) 1
β

≤ C(r2 + 1)

∫
Td
mrdx, (6.15)

and (∫
Td

1

mβr

) 1
β

≤ C(r2 + 1)

∫
Td

1

mr
dx. (6.16)

where β = 2∗

2 > 1. Since
∫
Td mdx = 1, arguing as in the last part of the proof of Theorem 5.1,

from (6.15) we get ‖m‖L∞(Td) ≤ C.
Next, if (A2a) holds, then by Proposition 4.5 we know that there exists r0 > 0 such that∫

Td
1

mr0 dx ≤ C. Hence, again arguing as in Theorem 5.1, from (6.16) we get
∥∥ 1
m

∥∥
L∞(Td)

≤ C.

In both cases A and B the Lipschitz estimates on u from Corollaries 6.12 and 5.3, and the
estimates just proven imply that ‖∆u‖L∞(Td) ≤ C. In particular

‖u‖W 2,q(Td) ≤ Cq for any q > 1.

Now, let us show that ‖ logm‖W 1,∞(Td) ≤ C. The function v = logm is solution of

∆v + |Dv|2 − b(x) ·Dv − ζ(x) = 0,
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where b(x) = DpH(x,Du,m, V ) and ζ = div(b). By Proposition 4.2, we know that ‖Dv‖L2(Td) ≤
C. Moreover, the W 2,q estimates on u and (A10) imply that Dx(b), ζ ∈ Lq(Td) for any q > 1.
Hence, the Hamiltonian F (x, p) = |p|2−b(x)·p−ζ(x) satisfies Assumptions (R1)-(R3). Proposition
?? then gives Lip(v) ≤ C. In particular, from ‖ logm‖L∞(Td) ≤ C we infer that there exists m̄ > 0

such thatm ≥ m̄. Moreover, the estimates
∥∥Dm
m

∥∥
L∞(Td)

, ‖m‖L∞(Td) ≤ C imply ‖Dm‖L∞(Td) ≤ C.

Finally, from the equation for m

∆m = bDm+ div(b)m,

and the estimates just proven we get ‖m‖W 2,q(Td) ≤ Cq for any q > 1.

Theorem 6.14. Let (u,m, V,H) solve the system (1.2). Assume either

A. (A1)-(A11) and one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

or

B. (H1),(H2) holds with ε ∈ [0, ε0], (A2a) and d ≤ 3.

Then there exist constants Ck,q which do not depend on the solution, such that
‖u‖Wk,q(Td), ‖m‖Wk,q(Td), ‖V ‖Wk,q(Td,Rd) ≤ Ck,q for any q, k ≥ 1.

Proof. Corollary 6.13 gives ‖m‖W 1,∞ ≤ C and ‖u‖W 2,q ≤ Cq for every 1 < q <∞. Differentiating
the first equation in (1.2) yields

D∆u = −D(H(x,Du,m, V )) = −Ĥx +D(g(m))−D2uDpH is bounded in Lq

thus ‖u‖W 3,q ≤ C3,q for all 1 < q <∞.
Therefore, from assumption (A4) and the second and third equations of (1.2), we get ‖m‖W 2,q ,

‖V ‖W 2,q ≤ C2,q for all 1 < q <∞. A bootstrap argument completes the proof of the theorem.

7 Existence by continuation method

To prove the existence of smooth solutions to (1.2) let us write it in an equivalent form
∆m− div(DpH(x,Du,m, V )m) = 0

∆u+H(x,Du,m, V ) = H

V = DpH(x,Du,m, V ),

and consider a parametrized family of Hamiltonians:

Hλ(x, p,m, V ) = λH(x, p,m, V ) + (1− λ)

(
|p|2

2
− g(m)

)
, 0 ≤ λ ≤ 1,

with the corresponding system of PDE’s:

∆mλ − div(DpHλ(x,Duλ,mλ, Vλ)mλ) = 0

∆uλ +Hλ(x,Duλ,mλ, Vλ) = Hλ

Vλ = DpHλ(x,Duλ,mλ, Vλ)∫
Td uλdx = 0∫
Td mλdx = 1.

(7.1)
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First let us start with some notation and hypothesis. Let

Ḣk(Td,R) = { f ∈ Hk(Td,R)|
∫
Td
fdx = 0 }.

Consider the Hilbert space F k = Ḣk(Td,R)×Hk(Td,R)× L2(Td,Rd)× R with the norm

‖w‖2Fk = ‖ψ‖2
Ḣk(Td,R)

+ ‖f‖2Hk(Td,R) + ‖W‖2L2(Td,Rd) + |h|2,

for w = (ψ, f,W, h) ∈ F k. We assume that H can be extended from the space χ(Td) to the space
L2(Td,Rd). Note that by Sobolev’s embedding theorem, H is well defined on the set of positive
functions m ∈ Hk(Td,R) with big enough k. We denote this set by Hk

+(Td,R), it is well defined
for large ks and is an open subset in Hk(Td,R).
For a point I = (x, p,m, V ) ∈ Td×Rd×Hk

+(Td,R)×L2(Td,Rd) we defineA0
λ,I : Rd → R,B0

λ,I : Rd →
Rd by

A0
λ,I(w) = DpHλ(x, p,m, V )w, B0

λ,I(w) = D2
ppHλ(x, p,m, V )w,

A1
λ,I : Hk(Td,R)→ R, B1

λ,I : Hk(Td,R)→ Rd by

A1
λ,I(f) = DmHλ(x, p,m, V )(f) + g′(m(x))f(x), B1

λ,I(f) = D2
pmHλ(x, p,m, V )(f),

and A2
λ,I : L2(Td,Rd)→ R, B2

λ,I : L2(Td,Rd)→ Rd by

A2
λ,I(W ) = DVHλ(x, p,m, V )(W ), B2

λ,I(W ) = D2
pVHλ(x, p,m, V )(W ).

In principle A1
λ,I(f) is only defined for a smooth f , but we are implicitly assuming that the

term g′(m(x))f(x) cancels a corresponding term in DmHλ(p, x,m, V )(f), as will be required in
hypothesis B2.

The following hypothesis are quite technical. However we have worked out in detail general
examples in Section 8, where these are checked explicitly.

(B1) We assume that for (p,m, V ) ∈ Rd × Hk
+(Td,R) × L2(Td,Rd) we have H(x, p,m, V ) ∈

Hk(Td,R) for every k big enough. Note that for big k ( k > d), m ∈ Hk
+(Td,R) implies

g(m) ∈ Hk(Td,R).

We further assume that H(x, p,m, V ), D2
ppH(x, p,m, V ), D2

pxH(x, p,m, V ) are continuous in
m with respect to the uniform convergence, and in V with respect to the convergence in
L2(Td,Rd). We assume H(x, p,m, V ) and DpH(x, p,m, V ) have Fréchet derivatives in V ,
thus the operators A2

λ,I(W ),B2
λ,I(W ) are well defined.

(B2) We assume that for any f ∈ Hk(Td,R) and W ∈ L2(Td,Rd) the functions A1
λ,I(f), B1

λ,I(f),

A2
λ,I(W ), B2

λ,I(W ) are smooth in x and p.

(B3) For any positive integer l, any point (m,V ) ∈ Hk
+(Td,R) × L2(Td,Rd) and any number

R > 0, there exists a constant C(l,m, V,R) such that

|Dl
x,pA1

λ(f)|, |Dl
x,pB1

λ(f)| ≤ C(l,m, V,R)‖f‖L2 ∀f ∈ L2(Td,R), for all x ∈ Td, |p| ≤ R,

and

|Dl
x,pA2

λ(W )|, |Dl
x,pB2

λ(W )| ≤ C(l,m, V,R)‖W‖L2 ∀W ∈ L2(Td,Rd), for all x ∈ Td, |p| ≤ R.
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Because of the structure of Hλ it suffices to check that both (B2) and (B3) hold when λ = 1.
Thus for a point (P,m, V ) ∈ C∞(Td,Rd)×C∞(Td,R)×L2(Td,Rd), we can define the operators

A1
λ,B1

λ : Hk(Td,R)→ C∞(Td,R) by

A1
λ(f)(x) = A1

λ,I(x)(f), and B1
λ(f)(x) = B1

λ,I(x)(f),

where I(x) = (x, P (x),m, V ).
Similarly, we define the operators A2

λ,B2
λ : L2(Td,Rd)→ C∞(Td,Rd) by

A2
λ(W )(x) = A2

λ,I(x)(W ), and B2
λ(W )(x) = B2

λ,I(x)(W ).

(B4) We assume further that the linear mapping Id−B2
λ : L2(Td,Rd)→ L2(Td,Rd) is invertible.

Since B2
λ = λB2

1, it is sufficient for the invertibility of Id− B2
λ to have ‖B2

1‖L2→L2 < 1.

We consider now the linearization of (1.2) at the point (λ0, Iλ0) in the direction (ψ, f,W, h̄)

∆f − div (Vλ0f)− div
[(
B0
λ0,Iλ0

(Dψ) + B1
λ0,Iλ0

(f) + B2
λ0,Iλ0

(W )
)
mλ0

]
= 0

∆ψ +A0
λ0,Iλ0

(Dψ) +A1
λ0,Iλ0

(f)− g′(mλ0)f +A2
λ0,Iλ0

(W )− h = 0

W = B0
λ0,Iλ0

(Dψ) + B1
λ0,Iλ0

(f) + B2
λ0,Iλ0

(W ),∫
Td ψdx = 0∫
Td fdx = 0.

(7.2)

Where Iλ0(x) = (x,Duλ0(x),mλ0 , Vλ0). Multiplying the second equation by f and subtracting the
first equation multiplied by ψ and integrating by parts we get:

0 =

∫
Td

[fA1
λ0,Iλ0 (x)(f)− g′(mλ0

)f2 + fA2
λ0,Iλ0 (x)(W )−mλ0

DψB0
λ0,Iλ0 (x)(Dψ(x))

−mλ0
DψB1

λ0,Iλ0 (x)(f)−mλ0
DψB2

λ0,Iλ0 (x)(W )]dx,

(7.3)

where we used A0
λ0,Iλ0 (x)(Dψ) = Vλ0Dψ(x).

For a point I(x) = (x, P (x),m, V ) where (P,m, V ) ∈ Hk(Td,Rd) × Hk
+(Td,R) × L2(Td,Rd)

we define Hλ,I : Hk(Td,Rd)×Hk(Td,R)× L2(Td,Rd)→ R by

Hλ,I(Q, f,W ) =

∫
Td

[mQB0
λ,I(x)(Q) +mQB1

λ,I(x)(f) + g′(m)f2

− fA1
λ,I(x)(f) +mQB2

λ,I(x)(W )− fA2
λ,I(x)(W )]dx.

(7.4)

Note that H0(Q, f,W ) =
∫
Td m|Q|

2 + g′(m)|f(x)|2dx and Hλ = (1− λ)H0 + λH1.

(B5) We suppose that there exists a constant C such that for any I(x) = (x,Du(x),m, V ), where
(u,m, V,H) is a solution to (7.1), and for all λ ∈ [0, 1]:

Hλ,I(Q, f,W ) ≥ θ
∫
Td
m|Q|2 + |f(x)|2 − C(W − B0

λ,I(x)(Q)− B1
λ,I(x)(f)− B2

λ,I(x)(W ))2dx.

This condition holds when λ = 0.

Let
F k+ = Ḣk(Td,R)×Hk

+(Td,R)× L2(Td,Rd)× R,

by a classical solution to (7.1) we mean a tuple (uλ,mλ, Vλ, Hλ) ∈
⋂
k

F k+.

Theorem 7.1. Assume the Assumptions (B1)-(B5) hold. Furthermore, suppose that either

27



A. (A1)-(A11) and one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

or

B. (H1),(H2) holds with ε ∈ [0, ε0], (A2a) and d ≤ 3.

Then there exists a classical solution (u,m, V,H) to (1.2).

Proof. For big enough k we can define E : R× F k+ → F k−2 by

E(λ, u,m, V,H) =


∆m− div(DpHλ(x,Du,m, V )m)
−∆u+Hλ(x,Du,m, V ) +H
V −DpHλ(x,Du,m, V )

−
∫
Td mdx+ 1

 .

Then (7.1) can be written as E(λ, uλ,mλ, Vλ, Hλ) = 0. The partial derivative of E at a point
vλ = (uλ,mλ, Vλ, Hλ)

Lλ := D2E(λ, vλ) : F k → F k−2,

is given by

Lλ(w)(x) =


∆f(x)− div(Vλ(x)f(x))− div([B0

λ,Iλ(x)(Dψ(x)) + B1
λ,Iλ(x)(f) + B2

λ,Iλ(x)(W )]mλ(x))

−∆ψ(x)−A0
λ,Iλ(x)(Dψ(x))−A1

λ0,Iλ(x)(f) + g′(mλ0(x))f(x)−A2
λ,Iλ(x)(W ) + h

W (x)− B0
λ,Iλ(x)(Dψ(x))− B1

λ,Iλ(x)(f)− B2
λ,Iλ(x)(W )

−
∫
Td fdx

 ,

where I(x) = (Duλ(x), x,mλ, Vλ) and w = (ψ, f,W, h) ∈ F k. Note that Lλ is well defined for any
k > 1.

Note also that for a classical solution (uλ,mλ, Vλ, Hλ) to (7.1), we get from the third equation
that Vλ ∈

⋂
k

Fk. Define the set

Λ = {λ| 0 ≤ λ ≤ 1, (7.1) has a classical solution (uλ,mλ, Vλ, Hλ) }.

Note that 0 ∈ Λ, with (u0,m0, V0, H0) ≡ (0, 1, 0,−g(1)). Our purpose is to prove Λ = [0, 1].
Let λk ∈ [0, 1], λk → λ0. It is easy to see that the Assumptions (A1) − (A11) for H imply the
corresponding properties for Hλ with uniform constants for any λ ∈ [0, 1]. Thus the results of the
previous sections (Theorem 6.14) and Sobolev’s embedding theorems imply that we can bound
uniformly derivatives of any order of the solutions uλk ,mλk , and also the C1 norm of Vλk . Thus
we can assume that there exist functions u,m, V and a number H, such that uλk → u,mλk → m
in H l(Td) for every integer l, and hence in Cl(Td) for every l, and also Vλk → V in L2(Td) and
Hλk → H. Passing to the limit in (7.1) for λ = λk and using Assumption (B1) we get that
(u,m, V,H) is a classical solution to (7.1) for λ = λ0. From mλk ≥ m̄ we have m > 0. This proves
λ0 ∈ Λ, thus Λ is closed. To prove that Λ is open we need to prove that Lλ is invertible in order to
use an implicit function theorem. For this let F = F 1. For w1, w2 ∈ F with smooth components
we can define

Bλ[w1, w2] =

∫
Td
w2 · Lλ(w1).
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Using integration by parts we have for w1, w2 smooth,

Bλ[w1, w2] =

∫
Td

[mλB0
λ,Iλ(x)(Dψ1)Dψ2 +mλB1

λ,Iλ(x)(f1)Dψ2 +mλB2
λ,Iλ(x)(W1)Dψ2

+A0
λ,Iλ(x)(Dψ2)f1 −A0

λ,Iλ(x)(Dψ1)f2 + g′(mλ)f1f2 −A1
λ,Iλ(x)(f1)f2

−A2
λ,Iλ(x)(W1)f2 +Dψ1Df2 −Df1Dψ2 + h1f2 − h2f1 +W1W2

− B0
λ,Iλ(x)(Dψ1)W2 − B1

λ,Iλ(x)(f1)W2 − B2
λ,Iλ(x)(W1)W2]dx.

(7.5)

This last expression is well defined on F × F. Thus it defines a bilinear form Bλ : F × F → R.

Step 1. B is bounded |Bλ[w1, w2]| ≤ C‖w1‖F ‖w2‖F .

We use the Assumption (B3) and Holder’s inequality on each summand.

Step 2. There exists a linear bounded mapping A : F → F such that Bλ[w1, w2] = (Aw1, w2)F .

For each fixed element w ∈ F , the operator w1 7→ Bλ[w1, w] is a bounded linear functional on
F ; whence the Riesz Representation Theorem ensures the existence of a unique element ν1 ∈ F
such that

B[w1, w] = (ν1, w)F , for all w ∈ H.

Let us define the operator A : F → F by Aw1 = ν1, so

Bλ[w1, w2] = (Aw1, w2) (w1, w2 ∈ F ).

It is easy to see that A is linear. Furthermore

‖Aw1‖2F = (Aw1, Aw1) = Bλ[w1, Aw1] ≤ C‖w1‖F ‖Aw1‖F .

Thus ‖Aw1‖F ≤ C‖w1‖F , and so A is bounded.

Step 3. There exists a positive constant c such that ‖Aw‖F ≥ c‖w‖F for all w ∈ F.

If the previous claim were false there would exist a sequence wn ∈ F with ‖wn‖F = 1 such
that Awn → 0. Let wn = (ψn, fn,Wn, hn) and w̃n = (0, 0, W̃n, 0) where

W̃n(x) = Wn(x)− B0
λ,Iλ(x)(Dψn(x))− B1

λ,Iλ(x)(fn)− B2
λ,Iλ(x)(Wn).

Assumption (B3) gives ‖w̃n‖F ≤ C‖wn‖F = C, thus we have

‖W̃n‖2L2 = Bλ[wn, w̃n] = (Awn, w̃n)→ 0.

Hence W̃n → 0 in L2. Let now w̄n = (ψn, fn, 0, hn) then, using Assumption (B5),

−C‖W̃n‖2L2 + θ

∫
Td
m̄|Dψn|2 + |fn|2dx ≤ Hλ,Iλ(Dψn, fn,Wn) = Bλ[wn, w̄n]→ 0.

Thus ψn → 0 in Ḣ1
0 and fn → 0 in L2. This, combined with W̃n → 0, implies Wn → 0. Taking

w̌n = (fn −
∫
fn, 0, 0, 0) ∈ F we get∫
Td

[−|Dfn|2 +mλB0
λ,Iλ(x)(Dψn)Dfn +mλB1

λ,Iλ(x)(fn)Dfn+

mλB2
λ,Iλ(x)(Wn)Dfn +A0

λ,Iλ(x)(Dfn)fn]dx = B[wn, w̌n] = (Awn, w̌n),

using the expressions for A0
λ,Iλ(x),B

0
λ,Iλ(x), Assumption (B3) and Cauchy’s inequality we get

1

2
‖Dfn‖2L2(Td) − C

(
‖Dψn‖2L2(Td) + ‖fn‖2L2(Td) + ‖Wn‖2L2(Td,Rd)

)
≤ −(Awn, w̌n)→ 0,
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were C depends only on uλ,mλ, Vλ and Hλ, thus since Dψn, fn,Wn → 0 in L2 we get that fn → 0
in H1(Td). Now taking w̆ = (0, 1, 0, 0) we get∫
Td

[−A0
λ,Iλ(x)(Dψn)+g′(mλ)fn−A1

λ,Iλ(x)(fn)−A2
λ,Iλ(x)(Wn)]dx+hn = B[wn, w̆] = (Awn, w̆)→ 0,

using the expressions for A0
λ,Iλ(x),B

0
λ,Iλ(x), the Assumption (B3) and the fact that Dψn, fn,Wn →

0 in L2 we get hn → 0. We conclude that wn → 0, which contradicts with ‖wn‖F = 1.

Step 4. R(A) is closed in F .

If Aun → w in F then c‖un − um‖F ≤ ‖Aun − Aum‖F → 0 as n,m → ∞. Therefore un
converges to some u ∈ F , then Au = w this proves that R(A) is closed.

Step 5. R(A) = F .

Suppose R(A) 6= F , then since R(A) is closed in F there exists w 6= 0 such that w⊥R(A) in
F . Let w = (ψ, f,W, h), take w̃ = (ψ, f, W̃ , h) where W̃ is given by

W̃ (x) = Bλ,Iλ(x)(Dψ(x)) + B1
λ,Iλ(x)(f) + B2

λ,Iλ(x)(W̃ ),

such W̃ exists since the operator Id− B2
λ is invertible. Then

0 = (Aw̃,w) = Bλ[w̃, w] = Hλ,Iλ(f,Dψ, W̃ ) ≥ θ
∫
Td
m̄|Dψ|2 + |f |2dx

thus ψ = 0, f = 0. Then, let ŵ = (0, 0, Ŵ , 0) where we take

Ŵ − B2
λ,Iλ(x)(Ŵ ) = W

using the invertibility of operator Id−B2
λ. This gives ‖W‖2L2 = Bλ[ŵ, w] = (Aŵ,w) = 0. Choosing

now w̄ = (0, 1, 0, 0) gives h = Bλ[w̄, w] = (Aw̄,w) = 0. Thus w = 0 and this implies R(A) = F .

Step 6. For any w0 ∈ F 0 there exists a unique w ∈ F such that Bλ[w, w̃] = (w0, w̃)F 0 for all
w̃ ∈ F. This implies that w is a unique weak solution to the equation Lλ(w) = w0. Then regularity
theory implies that w ∈ F 2 and Lλ(w) = w0 in the sense of F 2.

Consider the functional w̃ 7→ (w0, w̃)F 0 on F . By Riesz representation theorem, there exists
ω ∈ F such that (w0, w̃)F 0 = (ω, w̃)F now taking w = A−1ω we get

B[w, w̃] = (Aw, w̃)F = (ω, w̃)F = (w0, w̃)F 0 .

Let w = (ψ, f,W, h) and w0 = (ψ0, f0,W0, h0), taking w̃ = (ψ̃, 0, 0, 0), (0, f̃ , 0, 0), (0, 0, W̃ , 0), and
(0, 0, 0, 1), we get, respectively,∫

Td
mλB0

λ,Iλ(x)(Dψ)Dψ̃ +mλB1
λ,Iλ(x)(f)Dψ̃ +mλB2

λ,Iλ(x)(W )Dψ̃ + fVλDψ̃ −DfDψ̃ =

∫
Td
ψ0ψ̃

(7.6)

∫
Td

[−A0
λ,Iλ(x)(Dψ)f̃ + g′(m)ff̃ −A1

λ,Iλ(x)(f)f̃

−A2
λ,Iλ(x)(W )f̃ +DψDf̃ + hf̃ ]dx =

∫
Td
f0f̃ ,

(7.7)

∫
Td
WW̃ − B0

λ,Iλ(x)(Dψ)W̃ − B1
λ,Iλ(x)(f)W̃ − B2

λ,I(W )W̃ =

∫
Td
W0W̃ ,
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and

−
∫
Td
f = h0.

Since we can take ψ̃, f̃ ∈ H1(Td,R) and W̃ ∈ L2(Td,Rd) arbitrarily, we get

W (x) = Bλ,Iλ(x)(Dψ) + B1
λ,Iλ(x)(f) + B2

λ,Iλ(x)(W )

then the equation (7.6) gives that f is a weak solution to

∆f − div(Vλf)− div(Wmλ) = ψ0

and(7.7) means that ψ is a weak solution to

∆ψ +Aλ,Iλ(x)(Dψ) +A1
λ,Iλ(x)(f)− g′(mλ)f +A2

λ,Iλ(x)(W )− h = f0.

The last equation gives ∆ψ ∈ L2 thus ψ ∈ H2, then the equation for W yields that W ∈ H1 and
the equation for f gives ∆f ∈ L2 hence f ∈ H2. We conclude that w = (ψ, f,W, h) ∈ F 2 and
Lλ(w) = w0.

This implies that Lλ is bijective operator from F 2 to F 0. Then Lλ it is injective as an operator
from F k to F k−2 for any k ≥ 2. To prove that it is also surjective take any w0 ∈ F k−2, then there
exists w ∈ F 2 such that Lλ(w) = w0. Using a bootstrap argument like the one in the proof of the
previous lemma we conclude that in fact w ∈ F k. This proves that Lλ : F k → F k−2 is surjective
and therefore also bijective.

Step 7. Lλ is an isomorphism from F k to F k−2 for any k ≥ 2.

Since we have L : F k → F k−2 is bijective we just need to prove that it is also bounded. But
that follows directly from the Assumptions (B2), and (B3).

Step 8. We now prove that the set Λ is open.

Indeed for a point λ0 ∈ Λ we have proven that the partial derivative L = D2E(λ0, vλ0
) : F k →

F k−2 is an isometry for every k. Hence by the implicit function theorem (see [Die69]) there exists
a unique solution vλ ∈ F k+ to E(λ, vλ) = 0 for some neighborhood U of λ0. By the uniqueness
these solutions coincide with each other for all k, thus there exists a solution vλ which belongs to
all F k+, hence is a classical solution. Thus we conclude that U ⊂ Λ, which proves that Λ is open.
We have proven that Λ is both open and closed, hence Λ = [0, 1].

8 Examples

8.1 Velocity independent Hamiltonians

In this section we consider an Hamiltonian that does not depend on the velocity field:

H : Td × Rd × Pac(Td)→ R.

And we assume that it can be extended to a function

H : Td × Rd ×H1(Td,R)→ R.

The system (1.2) in this case is{
∆u(x) +H(x,Du(x),m) = H

∆m(x)− div(DpH(x,Du(x),m)m(x)) = 0.
(8.1)
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Let

Hλ(x, p,m) = λH(x, p,m) + (1− λ)

[
|p|2

2
− g(m)

]
, λ ∈ [0, 1],

and consider the corresponding equations{
∆uλ(x) +Hλ(x,Duλ(x),mλ) = Hλ

∆mλ(x)− div(DpHλ(x,Duλ(x),mλ)mλ(x)) = 0.
(8.2)

(C1) We assume that functions H(x, p,m), D2
ppH(x, p,m), D2

pxH(x, p,m) are continuous in m
with respect to the uniform convergence.

(C2) We assume that for any f ∈ Hk(Td,R) the functions

DmH(x, p,m)(f) + g′(m(x))f(x) and D2
pmH(x, p,m)(f), are smooth in x and p.

(C3) For any positive integer l, m ∈ Hk
+(Td,R) and any number R > 0, there exists a constant

C(l,m,R) such that∣∣Dl
x,p[DmH(x, p,m)(f) + g′(m(x))f(x)]

∣∣ ≤ C(l,m,R)‖f‖L2 ,

and ∣∣Dl
x,p[D

2
pmH(x, p,m)(f)]

∣∣ ≤ C(l,m,R)‖f‖L2 ,

for all x ∈ Td, |p| ≤ R and f ∈ L2(Td,R).

(C4) There exists θ > 0 such that for any (uλ,mλ) solution to (8.2), and any (Q, f) ∈ Hk(Td,Rd)×
Hk(Td,R) we have∫

Td
[mλ(x)Q(x)D2

ppH(x,Duλ(x),mλ)Q(x) +mλ(x)Q(x)D2
pmH(x,Duλ(x),mλ)(f)

− f(x)DmH(x,Duλ(x),mλ)(f)]dx ≥ θ
∫
Td
mλ|Q|2 + |f(x)|2dx.

Theorem 8.1. Assume the Assumptions (A1)-(A11), (C1)-(C4) hold. Furthermore, suppose that
one of the following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

Then there exists a classical solution (u,m,H) to (8.1).

Proof. We just need to check Assumptions (B1)-(B5) so that we can apply Theorem 7.1. For a
point I = (x, p,m) ∈ Rd × Td ×Hk

+(Td,R) we have A0
λ,I : Rd → R,B0

λ,I : Rd → Rd, given by

A0
λ,I(w) = λDpH(x, p,m) · w + (1− λ)p · w, B0

λ,I(w) = λD2
ppH(x, p,m)w + (1− λ)w,

A1
λ,I(f) = λ[DmH(x, p,m)(f) + g′(m(x))f(x)], B1

λ,I(f) = λD2
pmH(x, p,m)(f),

and since there is not velocity field: A2
λ,I(W ) = B2

λ,I(W ) = 0. From this Assumption (B4) holds
automatically. Assumptions (B1)-(B3) then follow easily form Assumptions (C1)-(C3). For a
point I(x) = (x,Duλ(x),mλ, V ) where uλ,mλ is a solution to (8.2) we have

Hλ,I(Q, f,W ) =

∫
Td

[mλQB0
λ,I(x)(Q) +mλQB1

λ,I(x)(f) + g′(mλ)f2 − fA1
λ,I(x)(f)]dx
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Note that because Hλ,I does not depend on W , it is enough for the Assumption (B5) to hold to
check that

Hλ,I(Q, f,W ) ≥ θ
∫
Td
mλ|Q|2 + |f(x)|2dx. (8.3)

We have Hλ,I(Q, f,W ) = λH1,I(Q, f,W ) + (1− λ)H0,I(Q, f,W ), and

H0,I(Q, f,W ) =

∫
Td
mλ|Q|2 + g′(mλ)|f(x)|2dx ≥ θ0

∫
Td
mλ|Q|2 + |f(x)|2dx,

since for any solution (uλ,mλ) to (8.2) mλ ∈ [m̄, C] and g is strictly increasing so g′(mλ) ≥ η0 for
some constant η0 > 0, and we take θ0 = min{1, η0}. Then it is enough to check the condition 8.3
just for λ = 1. Hence the condition (8.3) is equivalent to

H1,I(Q, f,W ) =

∫
Td

[mλ(x)Q(x)D2
ppH(x,Duλ(x),mλ)Q(x) +mλ(x)Q(x)D2

pmH(x,Duλ(x),mλ)(f)

− f(x)DmH(x,Duλ(x),mλ)(f)]dx ≥ θ
∫
Td
mλ|Q|2 + |f(x)|2dx,

that is (C4).

Note that the Assumption (C4) can be interpreted in some sense as a operator inequality
analog to the condition [

mD2
ppH

1
2D

2
pmH

1
2D

2
pmH −DmH

]
≥ θI,

obtained by Lions for the uniqueness of mean-field games with local dependence (see [Gue11]).
In the present paper Assumption (C4) is used in order to apply the implicit function theorem,

and as such can be regarded as a local uniqueness condition.

8.2 Velocity dependent example

In this section we consider the following type of Hamiltonians:

H(x, p,m, V ) = h(x, p) + αp

∫
Td
V mdy − g(m). (8.4)

Where h : Td× : Rd → R satisfies the following assumptions

(D1) h is smooth in x, p.

(D2) |p|2 ≤ C + C|h|.

(D3) p ·Dph− h ≥ ch− C.

(D4) |Dph|2 ≤ C + Ch.

(D5) D2
pph ≥ σI, for some σ > 0, where I is the d-dimensional identity matrix.

(D6) |D2
xxh|, |D2

xph|2 ≤ C + Ch.

(D7) h ≤ C + C|p|2.

(D8) |Dxh| ≤ C + C|p|β , with 0 ≤ β < 2.
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For some constants c, C > 0. We have

Hλ(x, p,m, V ) = hλ(x, p) + λαp

∫
Td
V mdy − g(m), λ ∈ [0, 1]. (8.5)

where hλ(x, p) = λh(x, p) + (1− λ) |p|
2

2 .

Theorem 8.2. Assume the Assumptions (D1)-(D8) hold. Furthermore, suppose that one of the
following assumptions is satisfied:

(i) (A2a)

(ii) (A2b), with any γ > 0 if d ≤ 4, and γ < 1
d−4 if d ≥ 5.

Then there there exists α0 > 0 such that for any α, |α| ≤ α0 there exists a classical solution
(u,m, V,H) to (1.2).

Proof. Assumptions (D1)-(D8) imply easily (A1)-(A11) with δ = α2

2 , so it is enough to check the
Assumptions (B1)-(B5). Assumption (B1) easily follows from (8.4). Now we proceed to checking
Assumptions (B2)-(B5), let I = (x, p,m, V ) ∈ Td × Rd ×Hk

+(Td,R)× L2(Td,Rd), we have:

A0
λ,I(w) = Dphλ(x, p) · w + λα

∫
Td
V mdy · w, B0

λ,I(w) = Dpphλw,

A1
λ,I(f) = λαp ·

∫
Td
V fdy, B1

λ,I(f) = λα

∫
Td
V fdy,

A2
λ,I(W ) = λαp ·

∫
Td
Wmdy, B2

λ,I(W ) = λα

∫
Td
Wmdy.

For a fixed f ∈ Hk(Td,R) and W ∈ L2(Td,Rd) the functions A1
λ,I(f), B1

λ,I(f), A2
λ,I(W ), B2

λ,I(W )

do not depend on x and are either linear in p or a constant. For all x ∈ Td, |p| ≤ R, we have

|A1
λ(f)| ≤ R|α|

∣∣∣∣∫
Td
V fdy

∣∣∣∣ ≤ R|α|‖V ‖L2(Td)‖f‖L2(Td)

|Dp[A1
λ(f)]| ≤ |α|

∣∣∣∣∫
Td
V fdy

∣∣∣∣ ≤ |α|‖V ‖L2(Td)‖f‖L2(Td)

|B1
λ(f)| ≤ |α|

∣∣∣∣∫
Td
V fdy

∣∣∣∣ ≤ |α|‖V ‖L2(Td)‖f‖L2(Td)

|A2
λ(W )| ≤ R|α|

∣∣∣∣∫
Td
Wmdy

∣∣∣∣ ≤ R|α|‖m‖L2(Td)‖W‖L2(Td)

|DpA2
λ(W )| ≤ |α|

∣∣∣∣∫
Td
Wmdy

∣∣∣∣ ≤ |α|‖m‖L2(Td)‖W‖L2(Td)

|B2
λ(W )| ≤ |α|

∣∣∣∣∫
Td
Wmdy

∣∣∣∣ ≤ R|α|‖m‖L2(Td)‖W‖L2(Td)

So the Assumptions (B3), (B2) hold.
To check Assumption (B4), take a point (P,m, V ) ∈ C∞(Td,Rd) × C∞(Td,R) × L2(Td,Rd),

the operators A1
λ,B1

λ : Hk(Td,R)→ C∞(Td,R) are given by

A1
λ(f)(x) = λαP (x) ·

∫
Td
V fdy, B1

λ(f)(x) = λα

∫
Td
V fdy,
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where I(x) = (x, P (x),m, V ). Similarly, the operators A2
λ,B2

λ : L2(Td,Rd) → C∞(Td,Rd) are
given by

A2
λ(W )(x) = A2

λ,I(x)(W ) = λαP (x) ·
∫
Td
Wmdy, B2

λ(W )(x) = B2
λ,I(x)(W ) = λα

∫
Td
Wmdy.

Let β = λα, and assume |α| < 1, then also |β| < 1 and we have

(Id− B2
λ)(W ) = W − β

∫
Td
Wmdy := W̃

Integrating this with respect to m we get (1− β)
∫
TdWmdy =

∫
Td W̃mdy, hence

W = W̃ + β
1−β

∫
Td W̃mdy, therefore

(Id− B2
λ)−1(W̃ ) = W̃ +

β

1− β

∫
Td
W̃mdy,

and so

‖(Id− B2
λ)−1(W̃ )‖L2 ≤

(
1 +

∣∣∣∣ β

1− β

∣∣∣∣) ‖m‖L2‖W̃‖L2 ,

which means Id− B2
λ : L2(Td,Rd)→ : L2(Td,Rd) is invertible.

Now we check the Assumption (B5). For a point I(x) = (x, P (x),m, V ) with P (x) = Duλ,m =
mλ, V = Vλ, where (uλ,mλ, Vλ) is a solution to (7.1), we have Hλ,I : Hk(Td,Rd) ×Hk(Td,R) ×
L2(Td,Rd)→ R defined by

Hλ,I(Q, f,W ) =

∫
Td

[m(x)Q(x)B0
λ,I(x)(Q(x)) +m(x)Q(x)B1

λ,I(x)(f) + g′(m(x))f2(x)

− f(x)A1
λ,I(x)(f) +m(x)Q(x)B2

λ,I(x)(W )− f(x)A2
λ,I(x)(W )]dx.

(8.6)

Simple computations give∫
Td
m(x)Q(x)B0

λ,I(x)(Q(x))dx =

∫
Td
m(x)Q(x)D2

pphλ(P (x), x)Q(x)dx ≥ σ1

∫
Td
m(x)|Q(x)|2dx,

where σ1 = min{1, σ},∫
Td
m(x)Q(x)B1

λ,I(x)(f)dx =

∫
Td

[m(x)Q(x)β

∫
Td
V (y)f(y)dy]dx = β

∫
Td
m(x)Q(x)dx

∫
Td
V fdx,

∫
Td
fA1

λ,I(x)(f)dx =

∫
Td

[
f(x)βP (x) ·

∫
Td
V (y)f(y)dy

]
dx = β

∫
Td
P (x)f(x)dx

∫
Td
V (x)f(x)dx,

∫
Td
m(x)Q(x)B2

λ,I(x)(W )dx =

∫
Td

[
m(x)Q(x)β

∫
Td
W (y)m(y)dy

]
dx

= β

∫
Td
m(x)Q(x)dx

∫
Td
W (x)m(x)dx,

∫
Td
f(x)A2

λ,I(x)(W )dx =

∫
Td

[
f(x)βP (x) ·

∫
Td
W (y)m(y)dy

]
dx = β

∫
Td
P (x)f(x)dx

∫
Td
W (x)m(x)dx.
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Plugging all this into (8.6) we obtain

Hλ,I(Q, f,W ) ≥ σ1

∫
Td
m|Q|2dx+

∫
Td
g′(m)|f |2dx+ β

∫
Td
mQdx

∫
Td
V fdx

− β
∫
Td
Pfdx

∫
Td
V fdx+ β

∫
Td
mQdx

∫
Td
Wmdx− β

∫
Td
Pfdx

∫
Td
Wmdx

Since (uλ,mλ, Vλ) is a solution to (7.1), we have that ‖m‖∞‖P‖∞, ‖V ‖∞ ≤ C, m ≥ m̄, for some
constants C, m̄ > 0. Since g is strictly increasing we have that g′(m) > η0 > 0 for all m ∈ [m̄, C].
Then using Cauchy’s and Holder’s inequalities we get∣∣∣∣∫

Td
mQdx

∫
Td
V fdx

∣∣∣∣ ≤ 1

2

[(∫
Td
mQdx

)2

+

(∫
Td
V fdx

)2
]
≤ 1

2

(∫
Td
m|Q|2dx+ C

2
∫
Td
|f |2dx

)
,

similarly ∣∣∣∣∫
Td
Pfdx

∫
Td
V fdx

∣∣∣∣ ≤ C2
∫
Td
|f |2dx,

∣∣∣∣∫
Td
mQdx

∫
Td
Wmdx

∣∣∣∣ ≤ 1

2

[∫
Td
m|Q|2dx+

(∫
Td
Wmdx

)2
]
,

∣∣∣∣∫
Td
Pfdx

∫
Td
Wmdx

∣∣∣∣ ≤ 1

2

[
C

2
∫
Td
|f |2dx+

(∫
Td
Wmdx

)2
]
.

This yields

Hλ,I(Q, f,W ) ≥ σ1

∫
Td
m|Q|2dx+

∫
Td
g′(m)|f |2dx−|α|

∫
Td
m|Q|2dx−3

2
|α|C2

∫
Td
|f |2dx−|α|

(∫
Td
Wmdx

)2

,

thus

Hλ,I(Q, f,W ) ≥ (σ1 − |α|)
∫
Td
m|Q|2dx+ (η0 −

3

2
|α|C2

)

∫
Td
|f |2dx− |α|

(∫
Td
Wmdx

)2

.

To estimate the last term let

R = W −B0
λ,I(x)(Q)−B1

λ,I(x)(f)−B2
λ,I(x)(W ) = W −D2

pphλQ−β
∫
Td
V fdx−β

∫
Td
Wmdx. (8.7)

Integrating with respect to m we get∫
Td
Rmdx = (1− β)

∫
Td
Wmdx−

∫
Td
D2
pphλQmdx− β

∫
Td
V fdx,

∫
Td
Wmdx =

1

1− β

[∫
Td
Rmdx+

∫
Td
D2
pphλQmdx+ β

∫
Td
V f

]
,

hence the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), Holder’s inequality and the bound |V | ≤ C
yield (∫

Td
Wmdx

)2

≤ 3

(1− β)2

[∫
Td
R2mdx+

∫
Td
|D2

pphλQ|2mdx+ |β|2C2
∫
Td
|f |2

]
.

If |α| < 1/2 then |β| ≤ |α| < 1 and |1− β| ≥ 1− |β| ≥ 1− |α| < 1/2, thus(∫
Td
Wmdx

)2

≤ 12

[∫
Td
R2mdx+

∫
Td
|D2

pphλQ|2mdx+ C
2
∫
Td
|f |2

]
,
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and we get

Hλ,I(Q, f,W ) ≥ (σ1 − 13|α|)
∫
Td
m|D2

pphλQ|2dx+ (η0 −
27

2
|α|C2

)

∫
Td
|f |2dx− 12

∫
Td
|R|2mdx.

Let α0 = min{ σ1

26 ,
η0
27 }, θ = min{ σ1

2 ,
η0
2 }, then for |α| ≤ α0 we obtain

Hλ,I(Q, f,W ) ≥ σ1

2

∫
Td
m|Q|2dx+

η0

2

∫
Td
|f |2dx− 12

∫
Td
|R|2mdx

≥ θ
∫
Td
m|Q|2 + |f |2dx− 12

∫
Td
|R|2mdx,

so Assumption (B5) holds.
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